Skip to content
Snippets Groups Projects
  1. Mar 24, 2022
  2. Feb 07, 2022
  3. Jan 21, 2022
  4. Jan 08, 2022
  5. Jan 07, 2022
  6. Dec 29, 2021
  7. Dec 27, 2021
    • Dinh Nguyen's avatar
      ARM: dts: socfpga: change qspi to "intel,socfpga-qspi" · 36de991e
      Dinh Nguyen authored
      
      Because of commit 9cb2ff11 ("spi: cadence-quadspi: Disable Auto-HW polling"),
      which does a write to the CQSPI_REG_WR_COMPLETION_CTRL register
      regardless of any condition. Well, the Cadence QuadSPI controller on
      Intel's SoCFPGA platforms does not implement the
      CQSPI_REG_WR_COMPLETION_CTRL register, thus a write to this register
      results in a crash!
      
      So starting with v5.16, I introduced the patch
      98d948eb ("spi: cadence-quadspi: fix write completion support"),
      which adds the dts compatible "intel,socfpga-qspi" that is specific for
      versions that doesn't have the CQSPI_REG_WR_COMPLETION_CTRL register implemented.
      
      Signed-off-by: default avatarDinh Nguyen <dinguyen@kernel.org>
      ---
      v3: revert back to "intel,socfpga-qspi"
      v2: use both "cdns,qspi-nor" and "cdns,qspi-nor-0010"
      36de991e
  8. Dec 22, 2021
  9. Dec 21, 2021
  10. Dec 20, 2021
    • Helge Deller's avatar
      parisc: Clear stale IIR value on instruction access rights trap · 484730e5
      Helge Deller authored
      
      When a trap 7 (Instruction access rights) occurs, this means the CPU
      couldn't execute an instruction due to missing execute permissions on
      the memory region.  In this case it seems the CPU didn't even fetched
      the instruction from memory and thus did not store it in the cr19 (IIR)
      register before calling the trap handler. So, the trap handler will find
      some random old stale value in cr19.
      
      This patch simply overwrites the stale IIR value with a constant magic
      "bad food" value (0xbaadf00d), in the hope people don't start to try to
      understand the various random IIR values in trap 7 dumps.
      
      Noticed-by: default avatarJohn David Anglin <dave.anglin@bell.net>
      Signed-off-by: default avatarHelge Deller <deller@gmx.de>
      484730e5
    • Sean Christopherson's avatar
      KVM: nVMX: Synthesize TRIPLE_FAULT for L2 if emulation is required · cd0e615c
      Sean Christopherson authored
      
      Synthesize a triple fault if L2 guest state is invalid at the time of
      VM-Enter, which can happen if L1 modifies SMRAM or if userspace stuffs
      guest state via ioctls(), e.g. KVM_SET_SREGS.  KVM should never emulate
      invalid guest state, since from L1's perspective, it's architecturally
      impossible for L2 to have invalid state while L2 is running in hardware.
      E.g. attempts to set CR0 or CR4 to unsupported values will either VM-Exit
      or #GP.
      
      Modifying vCPU state via RSM+SMRAM and ioctl() are the only paths that
      can trigger this scenario, as nested VM-Enter correctly rejects any
      attempt to enter L2 with invalid state.
      
      RSM is a straightforward case as (a) KVM follows AMD's SMRAM layout and
      behavior, and (b) Intel's SDM states that loading reserved CR0/CR4 bits
      via RSM results in shutdown, i.e. there is precedent for KVM's behavior.
      Following AMD's SMRAM layout is important as AMD's layout saves/restores
      the descriptor cache information, including CS.RPL and SS.RPL, and also
      defines all the fields relevant to invalid guest state as read-only, i.e.
      so long as the vCPU had valid state before the SMI, which is guaranteed
      for L2, RSM will generate valid state unless SMRAM was modified.  Intel's
      layout saves/restores only the selector, which means that scenarios where
      the selector and cached RPL don't match, e.g. conforming code segments,
      would yield invalid guest state.  Intel CPUs fudge around this issued by
      stuffing SS.RPL and CS.RPL on RSM.  Per Intel's SDM on the "Default
      Treatment of RSM", paraphrasing for brevity:
      
        IF internal storage indicates that the [CPU was post-VMXON]
        THEN
           enter VMX operation (root or non-root);
           restore VMX-critical state as defined in Section 34.14.1;
           set to their fixed values any bits in CR0 and CR4 whose values must
           be fixed in VMX operation [unless coming from an unrestricted guest];
           IF RFLAGS.VM = 0 AND (in VMX root operation OR the
              “unrestricted guest” VM-execution control is 0)
           THEN
             CS.RPL := SS.DPL;
             SS.RPL := SS.DPL;
           FI;
           restore current VMCS pointer;
        FI;
      
      Note that Intel CPUs also overwrite the fixed CR0/CR4 bits, whereas KVM
      will sythesize TRIPLE_FAULT in this scenario.  KVM's behavior is allowed
      as both Intel and AMD define CR0/CR4 SMRAM fields as read-only, i.e. the
      only way for CR0 and/or CR4 to have illegal values is if they were
      modified by the L1 SMM handler, and Intel's SDM "SMRAM State Save Map"
      section states "modifying these registers will result in unpredictable
      behavior".
      
      KVM's ioctl() behavior is less straightforward.  Because KVM allows
      ioctls() to be executed in any order, rejecting an ioctl() if it would
      result in invalid L2 guest state is not an option as KVM cannot know if
      a future ioctl() would resolve the invalid state, e.g. KVM_SET_SREGS, or
      drop the vCPU out of L2, e.g. KVM_SET_NESTED_STATE.  Ideally, KVM would
      reject KVM_RUN if L2 contained invalid guest state, but that carries the
      risk of a false positive, e.g. if RSM loaded invalid guest state and KVM
      exited to userspace.  Setting a flag/request to detect such a scenario is
      undesirable because (a) it's extremely unlikely to add value to KVM as a
      whole, and (b) KVM would need to consider ioctl() interactions with such
      a flag, e.g. if userspace migrated the vCPU while the flag were set.
      
      Cc: stable@vger.kernel.org
      Signed-off-by: default avatarSean Christopherson <seanjc@google.com>
      Message-Id: <20211207193006.120997-3-seanjc@google.com>
      Reviewed-by: default avatarMaxim Levitsky <mlevitsk@redhat.com>
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      cd0e615c
    • Sean Christopherson's avatar
      KVM: VMX: Always clear vmx->fail on emulation_required · a80dfc02
      Sean Christopherson authored
      
      Revert a relatively recent change that set vmx->fail if the vCPU is in L2
      and emulation_required is true, as that behavior is completely bogus.
      Setting vmx->fail and synthesizing a VM-Exit is contradictory and wrong:
      
        (a) it's impossible to have both a VM-Fail and VM-Exit
        (b) vmcs.EXIT_REASON is not modified on VM-Fail
        (c) emulation_required refers to guest state and guest state checks are
            always VM-Exits, not VM-Fails.
      
      For KVM specifically, emulation_required is handled before nested exits
      in __vmx_handle_exit(), thus setting vmx->fail has no immediate effect,
      i.e. KVM calls into handle_invalid_guest_state() and vmx->fail is ignored.
      Setting vmx->fail can ultimately result in a WARN in nested_vmx_vmexit()
      firing when tearing down the VM as KVM never expects vmx->fail to be set
      when L2 is active, KVM always reflects those errors into L1.
      
        ------------[ cut here ]------------
        WARNING: CPU: 0 PID: 21158 at arch/x86/kvm/vmx/nested.c:4548
                                      nested_vmx_vmexit+0x16bd/0x17e0
                                      arch/x86/kvm/vmx/nested.c:4547
        Modules linked in:
        CPU: 0 PID: 21158 Comm: syz-executor.1 Not tainted 5.16.0-rc3-syzkaller #0
        Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
        RIP: 0010:nested_vmx_vmexit+0x16bd/0x17e0 arch/x86/kvm/vmx/nested.c:4547
        Code: <0f> 0b e9 2e f8 ff ff e8 57 b3 5d 00 0f 0b e9 00 f1 ff ff 89 e9 80
        Call Trace:
         vmx_leave_nested arch/x86/kvm/vmx/nested.c:6220 [inline]
         nested_vmx_free_vcpu+0x83/0xc0 arch/x86/kvm/vmx/nested.c:330
         vmx_free_vcpu+0x11f/0x2a0 arch/x86/kvm/vmx/vmx.c:6799
         kvm_arch_vcpu_destroy+0x6b/0x240 arch/x86/kvm/x86.c:10989
         kvm_vcpu_destroy+0x29/0x90 arch/x86/kvm/../../../virt/kvm/kvm_main.c:441
         kvm_free_vcpus arch/x86/kvm/x86.c:11426 [inline]
         kvm_arch_destroy_vm+0x3ef/0x6b0 arch/x86/kvm/x86.c:11545
         kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1189 [inline]
         kvm_put_kvm+0x751/0xe40 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1220
         kvm_vcpu_release+0x53/0x60 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3489
         __fput+0x3fc/0x870 fs/file_table.c:280
         task_work_run+0x146/0x1c0 kernel/task_work.c:164
         exit_task_work include/linux/task_work.h:32 [inline]
         do_exit+0x705/0x24f0 kernel/exit.c:832
         do_group_exit+0x168/0x2d0 kernel/exit.c:929
         get_signal+0x1740/0x2120 kernel/signal.c:2852
         arch_do_signal_or_restart+0x9c/0x730 arch/x86/kernel/signal.c:868
         handle_signal_work kernel/entry/common.c:148 [inline]
         exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
         exit_to_user_mode_prepare+0x191/0x220 kernel/entry/common.c:207
         __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
         syscall_exit_to_user_mode+0x2e/0x70 kernel/entry/common.c:300
         do_syscall_64+0x53/0xd0 arch/x86/entry/common.c:86
         entry_SYSCALL_64_after_hwframe+0x44/0xae
      
      Fixes: c8607e4a ("KVM: x86: nVMX: don't fail nested VM entry on invalid guest state if !from_vmentry")
      Reported-by: default avatar <syzbot+f1d2136db9c80d4733e8@syzkaller.appspotmail.com>
      Reviewed-by: default avatarMaxim Levitsky <mlevitsk@redhat.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: default avatarSean Christopherson <seanjc@google.com>
      Message-Id: <20211207193006.120997-2-seanjc@google.com>
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      a80dfc02
    • Marc Orr's avatar
      KVM: x86: Always set kvm_run->if_flag · c5063551
      Marc Orr authored
      
      The kvm_run struct's if_flag is a part of the userspace/kernel API. The
      SEV-ES patches failed to set this flag because it's no longer needed by
      QEMU (according to the comment in the source code). However, other
      hypervisors may make use of this flag. Therefore, set the flag for
      guests with encrypted registers (i.e., with guest_state_protected set).
      
      Fixes: f1c6366e ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
      Signed-off-by: default avatarMarc Orr <marcorr@google.com>
      Message-Id: <20211209155257.128747-1-marcorr@google.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      Reviewed-by: default avatarMaxim Levitsky <mlevitsk@redhat.com>
      c5063551
    • Sean Christopherson's avatar
      KVM: x86/mmu: Don't advance iterator after restart due to yielding · 3a0f64de
      Sean Christopherson authored
      
      After dropping mmu_lock in the TDP MMU, restart the iterator during
      tdp_iter_next() and do not advance the iterator.  Advancing the iterator
      results in skipping the top-level SPTE and all its children, which is
      fatal if any of the skipped SPTEs were not visited before yielding.
      
      When zapping all SPTEs, i.e. when min_level == root_level, restarting the
      iter and then invoking tdp_iter_next() is always fatal if the current gfn
      has as a valid SPTE, as advancing the iterator results in try_step_side()
      skipping the current gfn, which wasn't visited before yielding.
      
      Sprinkle WARNs on iter->yielded being true in various helpers that are
      often used in conjunction with yielding, and tag the helper with
      __must_check to reduce the probabily of improper usage.
      
      Failing to zap a top-level SPTE manifests in one of two ways.  If a valid
      SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
      the shadow page will be leaked and KVM will WARN accordingly.
      
        WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
        RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
        Call Trace:
         <TASK>
         kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
         kvm_destroy_vm+0x162/0x2a0 [kvm]
         kvm_vcpu_release+0x34/0x60 [kvm]
         __fput+0x82/0x240
         task_work_run+0x5c/0x90
         do_exit+0x364/0xa10
         ? futex_unqueue+0x38/0x60
         do_group_exit+0x33/0xa0
         get_signal+0x155/0x850
         arch_do_signal_or_restart+0xed/0x750
         exit_to_user_mode_prepare+0xc5/0x120
         syscall_exit_to_user_mode+0x1d/0x40
         do_syscall_64+0x48/0xc0
         entry_SYSCALL_64_after_hwframe+0x44/0xae
      
      If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
      kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
      marking a struct page as dirty/accessed after it has been put back on the
      free list.  This directly triggers a WARN due to encountering a page with
      page_count() == 0, but it can also lead to data corruption and additional
      errors in the kernel.
      
        WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
        RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
        Call Trace:
         <TASK>
         kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
         __handle_changed_spte+0x92e/0xca0 [kvm]
         __handle_changed_spte+0x63c/0xca0 [kvm]
         __handle_changed_spte+0x63c/0xca0 [kvm]
         __handle_changed_spte+0x63c/0xca0 [kvm]
         zap_gfn_range+0x549/0x620 [kvm]
         kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
         mmu_free_root_page+0x219/0x2c0 [kvm]
         kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
         kvm_mmu_unload+0x1c/0xa0 [kvm]
         kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
         kvm_put_kvm+0x3b1/0x8b0 [kvm]
         kvm_vcpu_release+0x4e/0x70 [kvm]
         __fput+0x1f7/0x8c0
         task_work_run+0xf8/0x1a0
         do_exit+0x97b/0x2230
         do_group_exit+0xda/0x2a0
         get_signal+0x3be/0x1e50
         arch_do_signal_or_restart+0x244/0x17f0
         exit_to_user_mode_prepare+0xcb/0x120
         syscall_exit_to_user_mode+0x1d/0x40
         do_syscall_64+0x4d/0x90
         entry_SYSCALL_64_after_hwframe+0x44/0xae
      
      Note, the underlying bug existed even before commit 1af4a960 ("KVM:
      x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
      tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
      incorrectly advance past a top-level entry when yielding on a lower-level
      entry.  But with respect to leaking shadow pages, the bug was introduced
      by yielding before processing the current gfn.
      
      Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
      callers could jump to their "retry" label.  The downside of that approach
      is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
      in the loop, and there's no easy way to enfornce that requirement.
      
      Ideally, KVM would handling the cond_resched() fully within the iterator
      macro (the code is actually quite clean) and avoid this entire class of
      bugs, but that is extremely difficult do while also supporting yielding
      after tdp_mmu_set_spte_atomic() fails.  Yielding after failing to set a
      SPTE is very desirable as the "owner" of the REMOVED_SPTE isn't strictly
      bounded, e.g. if it's zapping a high-level shadow page, the REMOVED_SPTE
      may block operations on the SPTE for a significant amount of time.
      
      Fixes: faaf05b0 ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
      Fixes: 1af4a960 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
      Reported-by: default avatarIgnat Korchagin <ignat@cloudflare.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: default avatarSean Christopherson <seanjc@google.com>
      Message-Id: <20211214033528.123268-1-seanjc@google.com>
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      3a0f64de
    • Wei Wang's avatar
      KVM: x86: remove PMU FIXED_CTR3 from msrs_to_save_all · 9fb12fe5
      Wei Wang authored
      
      The fixed counter 3 is used for the Topdown metrics, which hasn't been
      enabled for KVM guests. Userspace accessing to it will fail as it's not
      included in get_fixed_pmc(). This breaks KVM selftests on ICX+ machines,
      which have this counter.
      
      To reproduce it on ICX+ machines, ./state_test reports:
      ==== Test Assertion Failure ====
      lib/x86_64/processor.c:1078: r == nmsrs
      pid=4564 tid=4564 - Argument list too long
      1  0x000000000040b1b9: vcpu_save_state at processor.c:1077
      2  0x0000000000402478: main at state_test.c:209 (discriminator 6)
      3  0x00007fbe21ed5f92: ?? ??:0
      4  0x000000000040264d: _start at ??:?
       Unexpected result from KVM_GET_MSRS, r: 17 (failed MSR was 0x30c)
      
      With this patch, it works well.
      
      Signed-off-by: default avatarWei Wang <wei.w.wang@intel.com>
      Message-Id: <20211217124934.32893-1-wei.w.wang@intel.com>
      Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
      9fb12fe5
  11. Dec 19, 2021
  12. Dec 17, 2021
  13. Dec 16, 2021
  14. Dec 15, 2021
Loading