- Dec 31, 2021
-
-
Mel Gorman authored
Mike Galbraith, Alexey Avramov and Darrick Wong all reported similar problems due to reclaim throttling for excessive lengths of time. In Alexey's case, a memory hog that should go OOM quickly stalls for several minutes before stalling. In Mike and Darrick's cases, a small memcg environment stalled excessively even though the system had enough memory overall. Commit 69392a40 ("mm/vmscan: throttle reclaim when no progress is being made") introduced the problem although commit a19594ca ("mm/vmscan: increase the timeout if page reclaim is not making progress") made it worse. Systems at or near an OOM state that cannot be recovered must reach OOM quickly and memcg should kill tasks if a memcg is near OOM. To address this, only stall for the first zone in the zonelist, reduce the timeout to 1 tick for VMSCAN_THROTTLE_NOPROGRESS and only stall if the scan control nr_reclaimed is 0, kswapd is still active and there were excessive pages pending for writeback. If kswapd has stopped reclaiming due to excessive failures, do not stall at all so that OOM triggers relatively quickly. Similarly, if an LRU is simply congested, only lightly throttle similar to NOPROGRESS. Alexey's original case was the most straight forward for i in {1..3}; do tail /dev/zero; done On vanilla 5.16-rc1, this test stalled heavily, after the patch the test completes in a few seconds similar to 5.15. Alexey's second test case added watching a youtube video while tail runs 10 times. On 5.15, playback only jitters slightly, 5.16-rc1 stalls a lot with lots of frames missing and numerous audio glitches. With this patch applies, the video plays similarly to 5.15. [lkp@intel.com: Fix W=1 build warning] Link: https://lore.kernel.org/r/99e779783d6c7fce96448a3402061b9dc1b3b602.camel@gmx.de Link: https://lore.kernel.org/r/20211124011954.7cab9bb4@mail.inbox.lv Link: https://lore.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net Link: https://lore.kernel.org/r/20211202150614.22440-1-mgorman@techsingularity.net Link: https://linux-regtracking.leemhuis.info/regzbot/regression/20211124011954.7cab9bb4@mail.inbox.lv/ Reported-and-tested-by:
Alexey Avramov <hakavlad@inbox.lv> Reported-and-tested-by:
Mike Galbraith <efault@gmx.de> Reported-and-tested-by:
Darrick J. Wong <djwong@kernel.org> Reported-by:
kernel test robot <lkp@intel.com> Acked-by:
Hugh Dickins <hughd@google.com> Tracked-by:
Thorsten Leemhuis <regressions@leemhuis.info> Fixes: 69392a40 ("mm/vmscan: throttle reclaim when no progress is being made") Signed-off-by:
Mel Gorman <mgorman@techsingularity.net> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Nov 17, 2021
-
-
Thiago Rafael Becker authored
rpcgss.h include protection was protecting against the define for rpcrdma.h. Signed-off-by:
Thiago Rafael Becker <trbecker@gmail.com> Signed-off-by:
Trond Myklebust <trond.myklebust@hammerspace.com>
-
- Nov 10, 2021
-
-
David Howells authored
Convert the netfs helper library to use folios throughout, convert the 9p and afs filesystems to use folios in their file I/O paths and convert the ceph filesystem to use just enough folios to compile. With these changes, afs passes -g quick xfstests. Changes ======= ver #5: - Got rid of folio_end{io,_read,_write}() and inlined the stuff it does instead (Willy decided he didn't want this after all). ver #4: - Fixed a bug in afs_redirty_page() whereby it didn't set the next page index in the loop and returned too early. - Simplified a check in v9fs_vfs_write_folio_locked()[1]. - Undid a change to afs_symlink_readpage()[1]. - Used offset_in_folio() in afs_write_end()[1]. - Changed from using page_endio() to folio_end{io,_read,_write}()[1]. ver #2: - Add 9p foliation. Signed-off-by:
David Howells <dhowells@redhat.com> Reviewed-by:
Jeff Layton <jlayton@kernel.org> Tested-by:
Jeff Layton <jlayton@kernel.org> Tested-by:
Dominique Martinet <asmadeus@codewreck.org> Tested-by:
<kafs-testing@auristor.com> cc: Matthew Wilcox (Oracle) <willy@infradead.org> cc: Marc Dionne <marc.dionne@auristor.com> cc: Ilya Dryomov <idryomov@gmail.com> cc: Dominique Martinet <asmadeus@codewreck.org> cc: v9fs-developer@lists.sourceforge.net cc: linux-afs@lists.infradead.org cc: ceph-devel@vger.kernel.org cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/YYKa3bfQZxK5/wDN@casper.infradead.org/ [1] Link: https://lore.kernel.org/r/2408234.1628687271@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/162877311459.3085614.10601478228012245108.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/162981153551.1901565.3124454657133703341.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/163005745264.2472992.9852048135392188995.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163584187452.4023316.500389675405550116.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/163649328026.309189.1124218109373941936.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/163657852454.834781.9265101983152100556.stgit@warthog.procyon.org.uk/ # v5
-
- Nov 06, 2021
-
-
Mel Gorman authored
Memcg reclaim throttles on congestion if no reclaim progress is made. This makes little sense, it might be due to writeback or a host of other factors. For !memcg reclaim, it's messy. Direct reclaim primarily is throttled in the page allocator if it is failing to make progress. Kswapd throttles if too many pages are under writeback and marked for immediate reclaim. This patch explicitly throttles if reclaim is failing to make progress. [vbabka@suse.cz: Remove redundant code] Link: https://lkml.kernel.org/r/20211022144651.19914-4-mgorman@techsingularity.net Signed-off-by:
Mel Gorman <mgorman@techsingularity.net> Acked-by:
Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Mel Gorman authored
Page reclaim throttles on congestion if too many parallel reclaim instances have isolated too many pages. This makes no sense, excessive parallelisation has nothing to do with writeback or congestion. This patch creates an additional workqueue to sleep on when too many pages are isolated. The throttled tasks are woken when the number of isolated pages is reduced or a timeout occurs. There may be some false positive wakeups for GFP_NOIO/GFP_NOFS callers but the tasks will throttle again if necessary. [shy828301@gmail.com: Wake up from compaction context] [vbabka@suse.cz: Account number of throttled tasks only for writeback] Link: https://lkml.kernel.org/r/20211022144651.19914-3-mgorman@techsingularity.net Signed-off-by:
Mel Gorman <mgorman@techsingularity.net> Acked-by:
Vlastimil Babka <vbabka@suse.cz> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Rik van Riel <riel@surriel.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Mel Gorman authored
Patch series "Remove dependency on congestion_wait in mm/", v5. This series that removes all calls to congestion_wait in mm/ and deletes wait_iff_congested. It's not a clever implementation but congestion_wait has been broken for a long time [1]. Even if congestion throttling worked, it was never a great idea. While excessive dirty/writeback pages at the tail of the LRU is one possibility that reclaim may be slow, there is also the problem of too many pages being isolated and reclaim failing for other reasons (elevated references, too many pages isolated, excessive LRU contention etc). This series replaces the "congestion" throttling with 3 different types. - If there are too many dirty/writeback pages, sleep until a timeout or enough pages get cleaned - If too many pages are isolated, sleep until enough isolated pages are either reclaimed or put back on the LRU - If no progress is being made, direct reclaim tasks sleep until another task makes progress with acceptable efficiency. This was initially tested with a mix of workloads that used to trigger corner cases that no longer work. A new test case was created called "stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly created XFS filesystem. Note that it may be necessary to increase the timeout of ssh if executing remotely as ssh itself can get throttled and the connection may timeout. stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4 to check the impact as the number of direct reclaimers increase. It has four types of worker. - One "anon latency" worker creates small mappings with mmap() and times how long it takes to fault the mapping reading it 4K at a time - X file writers which is fio randomly writing X files where the total size of the files add up to the allowed dirty_ratio. fio is allowed to run for a warmup period to allow some file-backed pages to accumulate. The duration of the warmup is based on the best-case linear write speed of the storage. - Y file readers which is fio randomly reading small files - Z anon memory hogs which continually map (100-dirty_ratio)% of memory - Total estimated WSS = (100+dirty_ration) percentage of memory X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4 The intent is to maximise the total WSS with a mix of file and anon memory where some anonymous memory must be swapped and there is a high likelihood of dirty/writeback pages reaching the end of the LRU. The test can be configured to have no background readers to stress dirty/writeback pages. The results below are based on having zero readers. The short summary of the results is that the series works and stalls until some event occurs but the timeouts may need adjustment. The test results are not broken down by patch as the series should be treated as one block that replaces a broken throttling mechanism with a working one. Finally, three machines were tested but I'm reporting the worst set of results. The other two machines had much better latencies for example. First the results of the "anon latency" latency stutterp 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r4 Amean mmap-4 31.4003 ( 0.00%) 2661.0198 (-8374.52%) Amean mmap-7 38.1641 ( 0.00%) 149.2891 (-291.18%) Amean mmap-12 60.0981 ( 0.00%) 187.8105 (-212.51%) Amean mmap-21 161.2699 ( 0.00%) 213.9107 ( -32.64%) Amean mmap-30 174.5589 ( 0.00%) 377.7548 (-116.41%) Amean mmap-48 8106.8160 ( 0.00%) 1070.5616 ( 86.79%) Stddev mmap-4 41.3455 ( 0.00%) 27573.9676 (-66591.66%) Stddev mmap-7 53.5556 ( 0.00%) 4608.5860 (-8505.23%) Stddev mmap-12 171.3897 ( 0.00%) 5559.4542 (-3143.75%) Stddev mmap-21 1506.6752 ( 0.00%) 5746.2507 (-281.39%) Stddev mmap-30 557.5806 ( 0.00%) 7678.1624 (-1277.05%) Stddev mmap-48 61681.5718 ( 0.00%) 14507.2830 ( 76.48%) Max-90 mmap-4 31.4243 ( 0.00%) 83.1457 (-164.59%) Max-90 mmap-7 41.0410 ( 0.00%) 41.0720 ( -0.08%) Max-90 mmap-12 66.5255 ( 0.00%) 53.9073 ( 18.97%) Max-90 mmap-21 146.7479 ( 0.00%) 105.9540 ( 27.80%) Max-90 mmap-30 193.9513 ( 0.00%) 64.3067 ( 66.84%) Max-90 mmap-48 277.9137 ( 0.00%) 591.0594 (-112.68%) Max mmap-4 1913.8009 ( 0.00%) 299623.9695 (-15555.96%) Max mmap-7 2423.9665 ( 0.00%) 204453.1708 (-8334.65%) Max mmap-12 6845.6573 ( 0.00%) 221090.3366 (-3129.64%) Max mmap-21 56278.6508 ( 0.00%) 213877.3496 (-280.03%) Max mmap-30 19716.2990 ( 0.00%) 216287.6229 (-997.00%) Max mmap-48 477923.9400 ( 0.00%) 245414.8238 ( 48.65%) For most thread counts, the time to mmap() is unfortunately increased. In earlier versions of the series, this was lower but a large number of throttling events were reaching their timeout increasing the amount of inefficient scanning of the LRU. There is no prioritisation of reclaim tasks making progress based on each tasks rate of page allocation versus progress of reclaim. The variance is also impacted for high worker counts but in all cases, the differences in latency are not statistically significant due to very large maximum outliers. Max-90 shows that 90% of the stalls are comparable but the Max results show the massive outliers which are increased to to stalling. It is expected that this will be very machine dependant. Due to the test design, reclaim is difficult so allocations stall and there are variances depending on whether THPs can be allocated or not. The amount of memory will affect exactly how bad the corner cases are and how often they trigger. The warmup period calculation is not ideal as it's based on linear writes where as fio is randomly writing multiple files from multiple tasks so the start state of the test is variable. For example, these are the latencies on a single-socket machine that had more memory Amean mmap-4 42.2287 ( 0.00%) 49.6838 * -17.65%* Amean mmap-7 216.4326 ( 0.00%) 47.4451 * 78.08%* Amean mmap-12 2412.0588 ( 0.00%) 51.7497 ( 97.85%) Amean mmap-21 5546.2548 ( 0.00%) 51.8862 ( 99.06%) Amean mmap-30 1085.3121 ( 0.00%) 72.1004 ( 93.36%) The overall system CPU usage and elapsed time is as follows 5.15.0-rc3 5.15.0-rc3 vanilla mm-reclaimcongest-v5r4 Duration User 6989.03 983.42 Duration System 7308.12 799.68 Duration Elapsed 2277.67 2092.98 The patches reduce system CPU usage by 89% as the vanilla kernel is rarely stalling. The high-level /proc/vmstats show 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r2 Ops Direct pages scanned 1056608451.00 503594991.00 Ops Kswapd pages scanned 109795048.00 147289810.00 Ops Kswapd pages reclaimed 63269243.00 31036005.00 Ops Direct pages reclaimed 10803973.00 6328887.00 Ops Kswapd efficiency % 57.62 21.07 Ops Kswapd velocity 48204.98 57572.86 Ops Direct efficiency % 1.02 1.26 Ops Direct velocity 463898.83 196845.97 Kswapd scanned less pages but the detailed pattern is different. The vanilla kernel scans slowly over time where as the patches exhibits burst patterns of scan activity. Direct reclaim scanning is reduced by 52% due to stalling. The pattern for stealing pages is also slightly different. Both kernels exhibit spikes but the vanilla kernel when reclaiming shows pages being reclaimed over a period of time where as the patches tend to reclaim in spikes. The difference is that vanilla is not throttling and instead scanning constantly finding some pages over time where as the patched kernel throttles and reclaims in spikes. Ops Percentage direct scans 90.59 77.37 For direct reclaim, vanilla scanned 90.59% of pages where as with the patches, 77.37% were direct reclaim due to throttling Ops Page writes by reclaim 2613590.00 1687131.00 Page writes from reclaim context are reduced. Ops Page writes anon 2932752.00 1917048.00 And there is less swapping. Ops Page reclaim immediate 996248528.00 107664764.00 The number of pages encountered at the tail of the LRU tagged for immediate reclaim but still dirty/writeback is reduced by 89%. Ops Slabs scanned 164284.00 153608.00 Slab scan activity is similar. ftrace was used to gather stall activity Vanilla ------- 1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000 2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000 8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000 29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000 82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0 The fast majority of wait_iff_congested calls do not stall at all. What is likely happening is that cond_resched() reschedules the task for a short period when the BDI is not registering congestion (which it never will in this test setup). 1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000 2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000 4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000 380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000 778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000 congestion_wait if called always exceeds the timeout as there is no trigger to wake it up. Bottom line: Vanilla will throttle but it's not effective. Patch series ------------ Kswapd throttle activity was always due to scanning pages tagged for immediate reclaim at the tail of the LRU 1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK The majority of events did not stall or stalled for a short period. Roughly 16% of stalls reached the timeout before expiry. For direct reclaim, the number of times stalled for each reason were 6624 reason=VMSCAN_THROTTLE_ISOLATED 93246 reason=VMSCAN_THROTTLE_NOPROGRESS 96934 reason=VMSCAN_THROTTLE_WRITEBACK The most common reason to stall was due to excessive pages tagged for immediate reclaim at the tail of the LRU followed by a failure to make forward. A relatively small number were due to too many pages isolated from the LRU by parallel threads For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was 9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED 12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED 83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED 6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED Most did not stall at all. A small number reached the timeout. For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over the map 1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS 6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS 11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS 16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS 18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS 21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS 26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS 27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS 28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS 29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS 31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS 32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS 33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS 37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS 38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS 40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS 43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS 55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS 56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS 58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS 59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS 61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS 79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS 88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS 94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS 118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS 119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS 126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS 146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS 159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS 178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS 183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS 237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS 266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS 313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS 347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS 470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS 559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS 964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS 2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS 2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS 7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS 22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS 51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS The full timeout is often hit but a large number also do not stall at all. The remainder slept a little allowing other reclaim tasks to make progress. While this timeout could be further increased, it could also negatively impact worst-case behaviour when there is no prioritisation of what task should make progress. For VMSCAN_THROTTLE_WRITEBACK, the breakdown was 1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK 2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK 3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK 12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK 16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK 24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK 28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK 32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK 42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK 77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK 99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK 137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK 190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK 7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK The majority hit the timeout in direct reclaim context although a sizable number did not stall at all. This is very different to kswapd where only a tiny percentage of stalls due to writeback reached the timeout. Bottom line, the throttling appears to work and the wakeup events may limit worst case stalls. There might be some grounds for adjusting timeouts but it's likely futile as the worst-case scenarios depend on the workload, memory size and the speed of the storage. A better approach to improve the series further would be to prioritise tasks based on their rate of allocation with the caveat that it may be very expensive to track. This patch (of 5): Page reclaim throttles on wait_iff_congested under the following conditions: - kswapd is encountering pages under writeback and marked for immediate reclaim implying that pages are cycling through the LRU faster than pages can be cleaned. - Direct reclaim will stall if all dirty pages are backed by congested inodes. wait_iff_congested is almost completely broken with few exceptions. This patch adds a new node-based workqueue and tracks the number of throttled tasks and pages written back since throttling started. If enough pages belonging to the node are written back then the throttled tasks will wake early. If not, the throttled tasks sleeps until the timeout expires. [neilb@suse.de: Uninterruptible sleep and simpler wakeups] [hdanton@sina.com: Avoid race when reclaim starts] [vbabka@suse.cz: vmstat irq-safe api, clarifications] Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1] Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net Signed-off-by:
Mel Gorman <mgorman@techsingularity.net> Acked-by:
Vlastimil Babka <vbabka@suse.cz> Cc: NeilBrown <neilb@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Gang Li authored
By using DECLARE_EVENT_CLASS and TRACE_EVENT_FN, we can save a lot of space from duplicate code. Link: https://lkml.kernel.org/r/20211009071243.70286-1-ligang.bdlg@bytedance.com Signed-off-by:
Gang Li <ligang.bdlg@bytedance.com> Acked-by:
Vlastimil Babka <vbabka@suse.cz> Reviewed-by:
Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Gang Li authored
Ftrace core will add newline automatically on printing, so using it in TP_printkcreates a blank line. Link: https://lkml.kernel.org/r/20211009071105.69544-1-ligang.bdlg@bytedance.com Signed-off-by:
Gang Li <ligang.bdlg@bytedance.com> Acked-by:
Vlastimil Babka <vbabka@suse.cz> Reviewed-by:
Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Nov 02, 2021
-
-
Chuck Lever authored
Refactor: surface useful show_ macros so they can be shared between the client and server trace code. Additional clean up: - Housekeeping: ensure the correct #include files are pulled in and add proper TRACE_DEFINE_ENUM where they are missing - Use a consistent naming scheme for the helpers - Store values to be displayed symbolically as unsigned long, as that is the type that the __print_yada() functions take Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
Trond Myklebust <trond.myklebust@hammerspace.com>
-
Chuck Lever authored
Refactor: Surface useful show_ macros for use by other trace subsystems. Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
Trond Myklebust <trond.myklebust@hammerspace.com>
-
- Oct 26, 2021
-
-
Chao Yu authored
Commit 3c62be17 ("f2fs: support multiple devices") missed to support direct IO for multiple device feature, this patch adds to support the missing part of multidevice feature. In addition, for multiple device image, we should be aware of any issued direct write IO rather than just buffered write IO, so that fsync and syncfs can issue a preflush command to the device where direct write IO goes, to persist user data for posix compliant. Signed-off-by:
Chao Yu <chao@kernel.org> Signed-off-by:
Jaegeuk Kim <jaegeuk@kernel.org>
-
- Oct 20, 2021
-
-
Chuck Lever authored
Introduce a single tracepoint that can replace simple dprintk call sites in upper layer "rpc_call_done" callbacks. Example: kworker/u24:2-1254 [001] 771.026677: rpc_stats_latency: task:00000001@00000002 xid=0x16a6f3c0 rpcbindv2 GETPORT backlog=446 rtt=101 execute=555 kworker/u24:2-1254 [001] 771.026677: rpc_task_call_done: task:00000001@00000002 flags=ASYNC|DYNAMIC|SOFT|SOFTCONN|SENT runstate=RUNNING|ACTIVE status=0 action=rpcb_getport_done kworker/u24:2-1254 [001] 771.026678: rpcb_setport: task:00000001@00000002 status=0 port=20048 Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
Trond Myklebust <trond.myklebust@hammerspace.com>
-
Chuck Lever authored
Clean up: BIT() is preferred over open-coding the shift. Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
Trond Myklebust <trond.myklebust@hammerspace.com>
-
Chuck Lever authored
For certain special cases, RPC-related tracepoints record a -1 as the task ID or the client ID. It's ugly for a trace event to display 4 billion in these cases. To help keep SUNRPC tracepoints consistent, create a macro that defines the print format specifiers for tk_pid and cl_clid. At some point in the future we might try tk_pid with a wider range of values than 0..64K so this makes it easier to make that change. RPC tracepoints now look like this: <...>-1276 [009] 149.720358: rpc_clnt_new: client=00000005 peer=[192.168.2.55]:20049 program=nfs server=klimt.ib <...>-1342 [004] 149.921234: rpc_xdr_recvfrom: task:0000001a@00000005 head=[0xff1242d9ab6dc01c,144] page=0 tail=[(nil),0] len=144 <...>-1342 [004] 149.921235: xprt_release_cong: task:0000001a@00000005 snd_task:ffffffff cong=256 cwnd=16384 <...>-1342 [004] 149.921235: xprt_put_cong: task:0000001a@00000005 snd_task:ffffffff cong=0 cwnd=16384 Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
Trond Myklebust <trond.myklebust@hammerspace.com>
-
Chuck Lever authored
This is a buffer to be left persistently registered while a connection is up. Connection tear-down will automatically DMA-unmap, invalidate, and dereg the MR. A persistently registered buffer is lower in cost to provide, and it can never be coalesced into the RDMA segment that carries the data payload. An RPC that provisions a Write chunk with a non-aligned length now uses this MR rather than the tail buffer of the RPC's rq_rcv_buf. Reviewed-By:
Tom Talpey <tom@talpey.com> Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
Trond Myklebust <trond.myklebust@hammerspace.com>
-
- Oct 19, 2021
-
-
Christoph Hellwig authored
We only need to call it to resolve the blk_status_t -> errno mapping for tracing, so move the conversion into the tracepoints that are not called at all when tracing isn't enabled. Signed-off-by:
Christoph Hellwig <hch@lst.de> Signed-off-by:
Jens Axboe <axboe@kernel.dk>
-
Jens Axboe authored
I recently had to look at a production problem where a request ended up getting the dreaded -EINVAL error on submit. The most used and hence useless of error codes, as it just tells you that something was wrong with your request, but not more than that. Let's dump the full sqe contents if we run into an issue failure, that'll allow easier diagnosing of a wide variety of issues. Signed-off-by:
Jens Axboe <axboe@kernel.dk>
-
- Oct 18, 2021
-
-
Matthew Wilcox (Oracle) authored
This saves five calls to compound_head(), totalling 60 bytes of text. Signed-off-by:
Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by:
Christoph Hellwig <hch@lst.de> Reviewed-by:
David Howells <dhowells@redhat.com> Acked-by:
Vlastimil Babka <vbabka@suse.cz>
-
Matthew Wilcox (Oracle) authored
Rename writeback_dirty_page() to writeback_dirty_folio() and wait_on_page_writeback() to folio_wait_writeback(). Signed-off-by:
Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by:
David Howells <dhowells@redhat.com> Acked-by:
Vlastimil Babka <vbabka@suse.cz>
-
Matthew Wilcox (Oracle) authored
This replaces activate_page() and eliminates lots of calls to compound_head(). Saves net 118 bytes of kernel text. There are still some redundant calls to page_folio() here which will be removed when pagevec_lru_move_fn() is converted to use folios. Signed-off-by:
Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by:
Christoph Hellwig <hch@lst.de> Reviewed-by:
David Howells <dhowells@redhat.com> Acked-by:
Vlastimil Babka <vbabka@suse.cz>
-
- Oct 17, 2021
-
-
Gao Xiang authored
Currently, z_erofs_map_blocks_iter() returns whether extents are compressed or not, and the decompression frontend gets the specific algorithms then. It works but not quite well in many aspests, for example: - The decompression frontend has to deal with whether extents are compressed or not again and lookup the algorithms if compressed. It's duplicated and too detailed about the on-disk mapping. - A new secondary compression head will be introduced later so that each file can have 2 compression algorithms at most for different type of data. It could increase the complexity of the decompression frontend if still handled in this way; - A new readmore decompression strategy will be introduced to get better performance for much bigger pcluster and lzma, which needs the specific algorithm in advance as well. Let's look up compression algorithms in z_erofs_map_blocks_iter() directly instead. Link: https://lore.kernel.org/r/20211008200839.24541-2-xiang@kernel.org Reviewed-by:
Chao Yu <chao@kernel.org> Reviewed-by:
Yue Hu <huyue2@yulong.com> Signed-off-by:
Gao Xiang <hsiangkao@linux.alibaba.com>
-
- Oct 16, 2021
-
-
Christoph Hellwig authored
q->disk becomes invalid after the gendisk is removed. Work around this by caching the dev_t for the tracepoints. The real fix would be to properly tear down the I/O schedulers with the gendisk, but that is a much more invasive change. Signed-off-by:
Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20211012093301.GA27795@lst.de Tested-by:
Yi Zhang <yi.zhang@redhat.com> Signed-off-by:
Jens Axboe <axboe@kernel.dk>
-
- Oct 12, 2021
-
-
Leon Romanovsky authored
The declaration of struct devlink in general header provokes the situation where internal fields can be accidentally used by the driver authors. In order to reduce such possible situations, let's reduce the namespace exposure of struct devlink. Signed-off-by:
Leon Romanovsky <leonro@nvidia.com> Signed-off-by:
Jakub Kicinski <kuba@kernel.org>
-
- Oct 08, 2021
-
-
Hou Tao authored
Commit 9df1c28b ("bpf: add writable context for raw tracepoints") supports writable context for tracepoint, but it misses the support for bare tracepoint which has no associated trace event. Bare tracepoint is defined by DECLARE_TRACE(), so adding a corresponding DECLARE_TRACE_WRITABLE() macro to generate a definition in __bpf_raw_tp_map section for bare tracepoint in a similar way to DEFINE_TRACE_WRITABLE(). Signed-off-by:
Hou Tao <houtao1@huawei.com> Signed-off-by:
Andrii Nakryiko <andrii@kernel.org> Acked-by:
Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20211004094857.30868-2-hotforest@gmail.com
-
- Oct 05, 2021
-
-
Dave Wysochanski authored
When cachefiles_cull() calls cachefiles_bury_object(), it passes a NULL object. When this occurs, either trace_cachefiles_unlink() or trace_cachefiles_rename() may oops due to the NULL object. Check for NULL object in the tracepoint and if so, set debug_id to MAX_UINT as was done in 2908f5e1. The following oops was seen with xfstests generic/100. BUG: kernel NULL pointer dereference, address: 0000000000000010 ... RIP: 0010:trace_event_raw_event_cachefiles_unlink+0x4e/0xa0 [cachefiles] ... Call Trace: cachefiles_bury_object+0x242/0x430 [cachefiles] ? __vfs_removexattr_locked+0x10f/0x150 ? vfs_removexattr+0x51/0xd0 cachefiles_cull+0x84/0x120 [cachefiles] cachefiles_daemon_cull+0xd1/0x120 [cachefiles] cachefiles_daemon_write+0x158/0x190 [cachefiles] vfs_write+0xbc/0x260 ksys_write+0x4f/0xc0 do_syscall_64+0x3b/0x90 The following oops was seen with xfstests generic/290. BUG: kernel NULL pointer dereference, address: 0000000000000010 ... RIP: 0010:trace_event_raw_event_cachefiles_rename+0x54/0xa0 [cachefiles] ... Call Trace: cachefiles_bury_object+0x35c/0x430 [cachefiles] cachefiles_cull+0x84/0x120 [cachefiles] cachefiles_daemon_cull+0xd1/0x120 [cachefiles] cachefiles_daemon_write+0x158/0x190 [cachefiles] vfs_write+0xbc/0x260 ksys_write+0x4f/0xc0 do_syscall_64+0x3b/0x90 Fixes: 2908f5e1 ("fscache: Add a cookie debug ID and use that in traces") Signed-off-by:
Dave Wysochanski <dwysocha@redhat.com> Signed-off-by:
David Howells <dhowells@redhat.com> Link: https://listman.redhat.com/archives/linux-cachefs/2021-October/msg00009.html
-
- Oct 04, 2021
-
-
Chuck Lever authored
This value is usually zero, but will be non-zero more often in the future. Knowing its value can be important diagnostic information. Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
J. Bruce Fields <bfields@redhat.com>
-
Chuck Lever authored
This is an operational low memory situation that needs to be flagged. The new tracepoint records a timestamp and the nfsd thread that failed to allocate pages. Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
J. Bruce Fields <bfields@redhat.com>
-
Chuck Lever authored
There are currently three separate purposes being served by single tracepoints. Split them up, as was done with wc_send. Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
J. Bruce Fields <bfields@redhat.com>
-
Chuck Lever authored
There are currently three separate purposes being served by a single tracepoint here. They need to be split up. svcrdma_wc_send: - status is always zero, so there's no value in recording it. - vendor_err is meaningless unless status is not zero, so there's no value in recording it. - This tracepoint is needed only when developing modifications, so it should be left disabled most of the time. svcrdma_wc_send_flush: - As above, needed only rarely, and not an error. svcrdma_wc_send_err: - This tracepoint can be left persistently enabled because completion errors are run-time problems (except for FLUSHED_ERR). - Tracepoint name now ends in _err to reflect its purpose. Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
J. Bruce Fields <bfields@redhat.com>
-
Chuck Lever authored
There are currently three separate purposes being served by a single tracepoint here. They need to be split up. svcrdma_wc_recv: - status is always zero, so there's no value in recording it. - vendor_err is meaningless unless status is not zero, so there's no value in recording it. - This tracepoint is needed only when developing modifications, so it should be left disabled most of the time. svcrdma_wc_recv_flush: - As above, needed only rarely, and not an error. svcrdma_wc_recv_err: - received is always zero, so there's no value in recording it. - This tracepoint can be left enabled because completion errors are run-time problems (except for FLUSHED_ERR). - Tracepoint name now ends in _err to reflect its purpose. Signed-off-by:
Chuck Lever <chuck.lever@oracle.com> Signed-off-by:
J. Bruce Fields <bfields@redhat.com>
-
- Oct 02, 2021
-
-
Dave Wysochanski authored
In cachefiles_mark_object_buried, the dentry in question may not have an owner, and thus our cachefiles_object pointer may be NULL when calling the tracepoint, in which case we will also not have a valid debug_id to print in the tracepoint. Check for NULL object in the tracepoint and if so, just set debug_id to MAX_UINT as was done in 2908f5e1 ("fscache: Add a cookie debug ID and use that in traces"). This fixes the following oops: FS-Cache: Cache "mycache" added (type cachefiles) CacheFiles: File cache on vdc registered ... Workqueue: fscache_object fscache_object_work_func [fscache] RIP: 0010:trace_event_raw_event_cachefiles_mark_buried+0x4e/0xa0 [cachefiles] .... Call Trace: cachefiles_mark_object_buried+0xa5/0xb0 [cachefiles] cachefiles_bury_object+0x270/0x430 [cachefiles] cachefiles_walk_to_object+0x195/0x9c0 [cachefiles] cachefiles_lookup_object+0x5a/0xc0 [cachefiles] fscache_look_up_object+0xd7/0x160 [fscache] fscache_object_work_func+0xb2/0x340 [fscache] process_one_work+0x1f1/0x390 worker_thread+0x53/0x3e0 kthread+0x127/0x150 Fixes: 2908f5e1 ("fscache: Add a cookie debug ID and use that in traces") Signed-off-by:
Dave Wysochanski <dwysocha@redhat.com> Signed-off-by:
David Howells <dhowells@redhat.com> cc: linux-cachefs@redhat.com Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Sep 29, 2021
-
-
Jeremy Kerr authored
The tag allocation, release and bind events are somewhat opaque outside the kernel; this change adds a few tracepoints to assist in instrumentation and debugging. Signed-off-by:
Jeremy Kerr <jk@codeconstruct.com.au> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- Sep 28, 2021
-
-
Gao Xiang authored
Fix up a misuse that the filename pointer isn't always valid in the ring buffer, and we should copy the content instead. Fixes: 0c5e36db ("f2fs: trace f2fs_lookup") Signed-off-by:
Gao Xiang <hsiangkao@linux.alibaba.com> Signed-off-by:
Jaegeuk Kim <jaegeuk@kernel.org>
-
- Sep 27, 2021
-
-
Matthew Wilcox (Oracle) authored
The page was only being used for the memcg and to gather trace information, so this is a simple conversion. The only caller of mem_cgroup_track_foreign_dirty() will be converted to folios in a later patch, so doing this now makes that patch simpler. Signed-off-by:
Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by:
Christoph Hellwig <hch@lst.de> Reviewed-by:
David Howells <dhowells@redhat.com> Acked-by:
Vlastimil Babka <vbabka@suse.cz>
-
Matthew Wilcox (Oracle) authored
Handle arbitrary-order folios being added to the LRU. By definition, all pages being added to the LRU were already head or base pages, but call page_folio() on them anyway to get the type right and avoid the buried calls to compound_head(). Saves 783 bytes of kernel text; no functions grow. Signed-off-by:
Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by:
Yu Zhao <yuzhao@google.com> Reviewed-by:
Christoph Hellwig <hch@lst.de> Reviewed-by:
David Howells <dhowells@redhat.com> Acked-by:
Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by:
Mike Rapoport <rppt@linux.ibm.com> Acked-by:
Vlastimil Babka <vbabka@suse.cz>
-
- Sep 23, 2021
-
-
Gao Xiang authored
Fix up a misuse that the filename pointer isn't always valid in the ring buffer, and we should copy the content instead. Link: https://lore.kernel.org/r/20210921143531.81356-1-hsiangkao@linux.alibaba.com Fixes: 13f06f48 ("staging: erofs: support tracepoint") Cc: stable@vger.kernel.org # 4.19+ Reviewed-by:
Chao Yu <chao@kernel.org> Signed-off-by:
Gao Xiang <hsiangkao@linux.alibaba.com>
-
- Sep 13, 2021
-
-
David Howells authored
Try to avoid taking the RCU read lock when checking the validity of a vnode's callback state. The only thing it's needed for is to pin the parent volume's server list whilst we search it to find the record of the server we're currently using to see if it has been reinitialised (ie. it sent us a CB.InitCallBackState* RPC). Do this by the following means: (1) Keep an additional per-cell counter (fs_s_break) that's incremented each time any of the fileservers in the cell reinitialises. Since the new counter can be accessed without RCU from the vnode, we can check that first - and only if it differs, get the RCU read lock and check the volume's server list. (2) Replace afs_get_s_break_rcu() with afs_check_server_good() which now indicates whether the callback promise is still expected to be present on the server. This does the checks as described in (1). (3) Restructure afs_check_validity() to take account of the change in (2). We can also get rid of the valid variable and just use the need_clear variable with the addition of the afs_cb_break_no_promise reason. (4) afs_check_validity() probably shouldn't be altering vnode->cb_v_break and vnode->cb_s_break when it doesn't have cb_lock exclusively locked. Move the change to vnode->cb_v_break to __afs_break_callback(). Delegate the change to vnode->cb_s_break to afs_select_fileserver() and set vnode->cb_fs_s_break there also. (5) afs_validate() no longer needs to get the RCU read lock around its call to afs_check_validity() - and can skip the call entirely if we don't have a promise. Signed-off-by:
David Howells <dhowells@redhat.com> Tested-by:
Markus Suvanto <markus.suvanto@gmail.com> cc: linux-afs@lists.infradead.org Link: https://lore.kernel.org/r/163111669583.283156.1397603105683094563.stgit@warthog.procyon.org.uk/
-
- Sep 08, 2021
-
-
SeongJae Park authored
This commit adds a tracepoint for DAMON. It traces the monitoring results of each region for each aggregation interval. Using this, DAMON can easily integrated with tracepoints supporting tools such as perf. Link: https://lkml.kernel.org/r/20210716081449.22187-7-sj38.park@gmail.com Signed-off-by:
SeongJae Park <sjpark@amazon.de> Reviewed-by:
Leonard Foerster <foersleo@amazon.de> Reviewed-by:
Steven Rostedt (VMware) <rostedt@goodmis.org> Reviewed-by:
Fernand Sieber <sieberf@amazon.com> Acked-by:
Shakeel Butt <shakeelb@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
SeongJae Park authored
PG_idle and PG_young allow the two PTE Accessed bit users, Idle Page Tracking and the reclaim logic concurrently work while not interfering with each other. That is, when they need to clear the Accessed bit, they set PG_young to represent the previous state of the bit, respectively. And when they need to read the bit, if the bit is cleared, they further read the PG_young to know whether the other has cleared the bit meanwhile or not. For yet another user of the PTE Accessed bit, we could add another page flag, or extend the mechanism to use the flags. For the DAMON usecase, however, we don't need to do that just yet. IDLE_PAGE_TRACKING and DAMON are mutually exclusive, so there's only ever going to be one user of the current set of flags. In this commit, we split out the CONFIG options to allow for the use of PG_young and PG_idle outside of idle page tracking. In the next commit, DAMON's reference implementation of the virtual memory address space monitoring primitives will use it. [sjpark@amazon.de: set PAGE_EXTENSION for non-64BIT] Link: https://lkml.kernel.org/r/20210806095153.6444-1-sj38.park@gmail.com [akpm@linux-foundation.org: tweak Kconfig text] [sjpark@amazon.de: hide PAGE_IDLE_FLAG from users] Link: https://lkml.kernel.org/r/20210813081238.34705-1-sj38.park@gmail.com Link: https://lkml.kernel.org/r/20210716081449.22187-5-sj38.park@gmail.com Signed-off-by:
SeongJae Park <sjpark@amazon.de> Reviewed-by:
Shakeel Butt <shakeelb@google.com> Reviewed-by:
Fernand Sieber <sieberf@amazon.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Leonard Foerster <foersleo@amazon.de> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Muchun Song authored
Instead of hard-coding ((1UL << NR_PAGEFLAGS) - 1) everywhere, introducing PAGEFLAGS_MASK to make the code clear to get the page flags. Link: https://lkml.kernel.org/r/20210819150712.59948-1-songmuchun@bytedance.com Signed-off-by:
Muchun Song <songmuchun@bytedance.com> Reviewed-by:
Roman Gushchin <guro@fb.com> Acked-by:
Johannes Weiner <hannes@cmpxchg.org> Reviewed-by:
Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-