- Jan 24, 2024
-
-
Kees Cook authored
Just to help distinguish the fs->in_exec flag from the current->in_execve flag, add comments in check_unsafe_exec() and copy_fs() for more context. Also note that in_execve is only used by TOMOYO now. Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: linux-fsdevel@vger.kernel.org Cc: linux-mm@kvack.org Signed-off-by:
Kees Cook <keescook@chromium.org>
-
- Jan 05, 2024
-
-
Kinsey Ho authored
Add CONFIG_LRU_GEN_WALKS_MMU such that if disabled, the code that walks page tables to promote pages into the youngest generation will not be built. Also improves code readability by adding two helper functions get_mm_state() and get_next_mm(). Link: https://lkml.kernel.org/r/20231227141205.2200125-3-kinseyho@google.com Signed-off-by:
Kinsey Ho <kinseyho@google.com> Co-developed-by:
Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by:
Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Tested-by:
Donet Tom <donettom@linux.vnet.ibm.com> Acked-by:
Yu Zhao <yuzhao@google.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Dec 27, 2023
-
-
Kent Overstreet authored
We're trying to get sched.h down to more or less just types only, not code - rseq can live in its own header. This helps us kill the dependency on preempt.h in sched.h. Signed-off-by:
Kent Overstreet <kent.overstreet@linux.dev>
-
- Dec 21, 2023
-
-
Kent Overstreet authored
Signed-off-by:
Kent Overstreet <kent.overstreet@linux.dev>
-
- Dec 20, 2023
-
-
Kevin Hao authored
TASK_KILLABLE already includes TASK_UNINTERRUPTIBLE, so there is no need to add a separate TASK_UNINTERRUPTIBLE. Link: https://lkml.kernel.org/r/20231208084115.1973285-1-haokexin@gmail.com Signed-off-by:
Kevin Hao <haokexin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Dec 12, 2023
-
-
Jason Gunthorpe authored
Linus suggested that the kconfig here is confusing: https://lore.kernel.org/all/CAHk-=wgUiAtiszwseM1p2fCJ+sC4XWQ+YN4TanFhUgvUqjr9Xw@mail.gmail.com/ Let's break it into three kconfigs controlling distinct things: - CONFIG_IOMMU_MM_DATA controls if the mm_struct has the additional fields for the IOMMU. Currently only PASID, but later patches store a struct iommu_mm_data * - CONFIG_ARCH_HAS_CPU_PASID controls if the arch needs the scheduling bit for keeping track of the ENQCMD instruction. x86 will select this if IOMMU_SVA is enabled - IOMMU_SVA controls if the IOMMU core compiles in the SVA support code for iommu driver use and the IOMMU exported API This way ARM will not enable CONFIG_ARCH_HAS_CPU_PASID Signed-off-by:
Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/20231027000525.1278806-2-tina.zhang@intel.com Signed-off-by:
Joerg Roedel <jroedel@suse.de>
-
- Dec 11, 2023
-
-
Heiko Carstens authored
IA-64 was the only architecture which selected ARCH_TASK_STRUCT_ALLOCATOR. IA-64 was removed with commit cf8e8658 ("arch: Remove Itanium (IA-64) architecture"). Therefore remove support for ARCH_THREAD_STACK_ALLOCATOR as well. Link: https://lkml.kernel.org/r/20231116133638.1636277-3-hca@linux.ibm.com Signed-off-by:
Heiko Carstens <hca@linux.ibm.com> Reviewed-by:
Arnd Bergmann <arnd@arndb.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Heiko Carstens authored
Patch series "Remove unused code after IA-64 removal". While looking into something different I noticed that there are a couple of Kconfig options which were only selected by IA-64 and which are now unused. So remove them and simplify the code a bit. This patch (of 3): IA-64 was the only architecture which selected ARCH_THREAD_STACK_ALLOCATOR. IA-64 was removed with commit cf8e8658 ("arch: Remove Itanium (IA-64) architecture"). Therefore remove support for ARCH_THREAD_STACK_ALLOCATOR as well. Link: https://lkml.kernel.org/r/20231116133638.1636277-1-hca@linux.ibm.com Link: https://lkml.kernel.org/r/20231116133638.1636277-2-hca@linux.ibm.com Signed-off-by:
Heiko Carstens <hca@linux.ibm.com> Reviewed-by:
Arnd Bergmann <arnd@arndb.de> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Peng Zhang authored
In dup_mmap(), using __mt_dup() to duplicate the old maple tree and then directly replacing the entries of VMAs in the new maple tree can result in better performance. __mt_dup() uses DFS pre-order to duplicate the maple tree, so it is efficient. The average time complexity of __mt_dup() is O(n), where n is the number of VMAs. The proof of the time complexity is provided in the commit log that introduces __mt_dup(). After duplicating the maple tree, each element is traversed and replaced (ignoring the cases of deletion, which are rare). Since it is only a replacement operation for each element, this process is also O(n). Analyzing the exact time complexity of the previous algorithm is challenging because each insertion can involve appending to a node, pushing data to adjacent nodes, or even splitting nodes. The frequency of each action is difficult to calculate. The worst-case scenario for a single insertion is when the tree undergoes splitting at every level. If we consider each insertion as the worst-case scenario, we can determine that the upper bound of the time complexity is O(n*log(n)), although this is a loose upper bound. However, based on the test data, it appears that the actual time complexity is likely to be O(n). As the entire maple tree is duplicated using __mt_dup(), if dup_mmap() fails, there will be a portion of VMAs that have not been duplicated in the maple tree. To handle this, we mark the failure point with XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, stop releasing VMAs that have not been duplicated after this point. There is a "spawn" in byte-unixbench[1], which can be used to test the performance of fork(). I modified it slightly to make it work with different number of VMAs. Below are the test results. The first row shows the number of VMAs. The second and third rows show the number of fork() calls per ten seconds, corresponding to next-20231006 and the this patchset, respectively. The test results were obtained with CPU binding to avoid scheduler load balancing that could cause unstable results. There are still some fluctuations in the test results, but at least they are better than the original performance. 21 121 221 421 821 1621 3221 6421 12821 25621 51221 112100 76261 54227 34035 20195 11112 6017 3161 1606 802 393 114558 83067 65008 45824 28751 16072 8922 4747 2436 1233 599 2.19% 8.92% 19.88% 34.64% 42.37% 44.64% 48.28% 50.17% 51.68% 53.74% 52.42% [1] https://github.com/kdlucas/byte-unixbench/tree/master Link: https://lkml.kernel.org/r/20231027033845.90608-11-zhangpeng.00@bytedance.com Signed-off-by:
Peng Zhang <zhangpeng.00@bytedance.com> Suggested-by:
Liam R. Howlett <Liam.Howlett@oracle.com> Reviewed-by:
Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Mike Christie <michael.christie@oracle.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Oct 19, 2023
-
-
Christian Brauner authored
In recent discussions around some performance improvements in the file handling area we discussed switching the file cache to rely on SLAB_TYPESAFE_BY_RCU which allows us to get rid of call_rcu() based freeing for files completely. This is a pretty sensitive change overall but it might actually be worth doing. The main downside is the subtlety. The other one is that we should really wait for Jann's patch to land that enables KASAN to handle SLAB_TYPESAFE_BY_RCU UAFs. Currently it doesn't but a patch for this exists. With SLAB_TYPESAFE_BY_RCU objects may be freed and reused multiple times which requires a few changes. So it isn't sufficient anymore to just acquire a reference to the file in question under rcu using atomic_long_inc_not_zero() since the file might have already been recycled and someone else might have bumped the reference. In other words, callers might see reference count bumps from newer users. For this reason it is necessary to verify that the pointer is the same before and after the reference count increment. This pattern can be seen in get_file_rcu() and __files_get_rcu(). In addition, it isn't possible to access or check fields in struct file without first aqcuiring a reference on it. Not doing that was always very dodgy and it was only usable for non-pointer data in struct file. With SLAB_TYPESAFE_BY_RCU it is necessary that callers first acquire a reference under rcu or they must hold the files_lock of the fdtable. Failing to do either one of this is a bug. Thanks to Jann for pointing out that we need to ensure memory ordering between reallocations and pointer check by ensuring that all subsequent loads have a dependency on the second load in get_file_rcu() and providing a fixup that was folded into this patch. Cc: Jann Horn <jannh@google.com> Suggested-by:
Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by:
Christian Brauner <brauner@kernel.org>
-
- Oct 18, 2023
-
-
Lorenzo Stoakes authored
Patch series "permit write-sealed memfd read-only shared mappings", v4. The man page for fcntl() describing memfd file seals states the following about F_SEAL_WRITE:- Furthermore, trying to create new shared, writable memory-mappings via mmap(2) will also fail with EPERM. With emphasis on 'writable'. In turns out in fact that currently the kernel simply disallows all new shared memory mappings for a memfd with F_SEAL_WRITE applied, rendering this documentation inaccurate. This matters because users are therefore unable to obtain a shared mapping to a memfd after write sealing altogether, which limits their usefulness. This was reported in the discussion thread [1] originating from a bug report [2]. This is a product of both using the struct address_space->i_mmap_writable atomic counter to determine whether writing may be permitted, and the kernel adjusting this counter when any VM_SHARED mapping is performed and more generally implicitly assuming VM_SHARED implies writable. It seems sensible that we should only update this mapping if VM_MAYWRITE is specified, i.e. whether it is possible that this mapping could at any point be written to. If we do so then all we need to do to permit write seals to function as documented is to clear VM_MAYWRITE when mapping read-only. It turns out this functionality already exists for F_SEAL_FUTURE_WRITE - we can therefore simply adapt this logic to do the same for F_SEAL_WRITE. We then hit a chicken and egg situation in mmap_region() where the check for VM_MAYWRITE occurs before we are able to clear this flag. To work around this, perform this check after we invoke call_mmap(), with careful consideration of error paths. Thanks to Andy Lutomirski for the suggestion! [1]:https://lore.kernel.org/all/20230324133646.16101dfa666f253c4715d965@linux-foundation.org/ [2]:https://bugzilla.kernel.org/show_bug.cgi?id=217238 This patch (of 3): There is a general assumption that VMAs with the VM_SHARED flag set are writable. If the VM_MAYWRITE flag is not set, then this is simply not the case. Update those checks which affect the struct address_space->i_mmap_writable field to explicitly test for this by introducing [vma_]is_shared_maywrite() helper functions. This remains entirely conservative, as the lack of VM_MAYWRITE guarantees that the VMA cannot be written to. Link: https://lkml.kernel.org/r/cover.1697116581.git.lstoakes@gmail.com Link: https://lkml.kernel.org/r/d978aefefa83ec42d18dfa964ad180dbcde34795.1697116581.git.lstoakes@gmail.com Signed-off-by:
Lorenzo Stoakes <lstoakes@gmail.com> Suggested-by:
Andy Lutomirski <luto@kernel.org> Reviewed-by:
Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Oct 10, 2023
-
-
Matthew Wilcox (Oracle) authored
Fix the various warnings from kernel-doc in kernel/fork.c Signed-off-by:
"Matthew Wilcox (Oracle)" <willy@infradead.org> Reviewed-by:
Christian Brauner <brauner@kernel.org> Acked-by:
Randy Dunlap <rdunlap@infradead.org> Tested-by:
Randy Dunlap <rdunlap@infradead.org> Signed-off-by:
Jonathan Corbet <corbet@lwn.net> Link: https://lore.kernel.org/r/20230824193644.3029141-1-willy@infradead.org
-
- Oct 06, 2023
-
-
Florent Revest authored
This extends the current PR_SET_MDWE prctl arg with a bit to indicate that the process doesn't want MDWE protection to propagate to children. To implement this no-inherit mode, the tag in current->mm->flags must be absent from MMF_INIT_MASK. This means that the encoding for "MDWE but without inherit" is different in the prctl than in the mm flags. This leads to a bit of bit-mangling in the prctl implementation. Link: https://lkml.kernel.org/r/20230828150858.393570-6-revest@chromium.org Signed-off-by:
Florent Revest <revest@chromium.org> Reviewed-by:
Kees Cook <keescook@chromium.org> Reviewed-by:
Catalin Marinas <catalin.marinas@arm.com> Cc: Alexey Izbyshev <izbyshev@ispras.ru> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ayush Jain <ayush.jain3@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Joey Gouly <joey.gouly@arm.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Mark Brown <broonie@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Szabolcs Nagy <Szabolcs.Nagy@arm.com> Cc: Topi Miettinen <toiwoton@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Oct 04, 2023
-
-
Oleg Nesterov authored
The last user was removed by the previous patch. Link: https://lkml.kernel.org/r/20230826111409.GA23243@redhat.com Signed-off-by:
Oleg Nesterov <oleg@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Mateusz Guzik authored
The feature got retired in f1a79412 ("mm: convert mm's rss stats into percpu_counter"), but the patch failed to fully clean it up. Link: https://lkml.kernel.org/r/20230823170556.2281747-1-mjguzik@gmail.com Signed-off-by:
Mateusz Guzik <mjguzik@gmail.com> Acked-by:
Shakeel Butt <shakeelb@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Sep 11, 2023
-
-
Ard Biesheuvel authored
The Itanium architecture is obsolete, and an informal survey [0] reveals that any residual use of Itanium hardware in production is mostly HP-UX or OpenVMS based. The use of Linux on Itanium appears to be limited to enthusiasts that occasionally boot a fresh Linux kernel to see whether things are still working as intended, and perhaps to churn out some distro packages that are rarely used in practice. None of the original companies behind Itanium still produce or support any hardware or software for the architecture, and it is listed as 'Orphaned' in the MAINTAINERS file, as apparently, none of the engineers that contributed on behalf of those companies (nor anyone else, for that matter) have been willing to support or maintain the architecture upstream or even be responsible for applying the odd fix. The Intel firmware team removed all IA-64 support from the Tianocore/EDK2 reference implementation of EFI in 2018. (Itanium is the original architecture for which EFI was developed, and the way Linux supports it deviates significantly from other architectures.) Some distros, such as Debian and Gentoo, still maintain [unofficial] ia64 ports, but many have dropped support years ago. While the argument is being made [1] that there is a 'for the common good' angle to being able to build and run existing projects such as the Grid Community Toolkit [2] on Itanium for interoperability testing, the fact remains that none of those projects are known to be deployed on Linux/ia64, and very few people actually have access to such a system in the first place. Even if there were ways imaginable in which Linux/ia64 could be put to good use today, what matters is whether anyone is actually doing that, and this does not appear to be the case. There are no emulators widely available, and so boot testing Itanium is generally infeasible for ordinary contributors. GCC still supports IA-64 but its compile farm [3] no longer has any IA-64 machines. GLIBC would like to get rid of IA-64 [4] too because it would permit some overdue code cleanups. In summary, the benefits to the ecosystem of having IA-64 be part of it are mostly theoretical, whereas the maintenance overhead of keeping it supported is real. So let's rip off the band aid, and remove the IA-64 arch code entirely. This follows the timeline proposed by the Debian/ia64 maintainer [5], which removes support in a controlled manner, leaving IA-64 in a known good state in the most recent LTS release. Other projects will follow once the kernel support is removed. [0] https://lore.kernel.org/all/CAMj1kXFCMh_578jniKpUtx_j8ByHnt=s7S+yQ+vGbKt9ud7+kQ@mail.gmail.com/ [1] https://lore.kernel.org/all/0075883c-7c51-00f5-2c2d-5119c1820410@web.de/ [2] https://gridcf.org/gct-docs/latest/index.html [3] https://cfarm.tetaneutral.net/machines/list/ [4] https://lore.kernel.org/all/87bkiilpc4.fsf@mid.deneb.enyo.de/ [5] https://lore.kernel.org/all/ff58a3e76e5102c94bb5946d99187b358def688a.camel@physik.fu-berlin.de/ Acked-by:
Tony Luck <tony.luck@intel.com> Signed-off-by:
Ard Biesheuvel <ardb@kernel.org>
-
- Aug 25, 2023
-
-
Mateusz Guzik authored
A trivial execve scalability test which tries to be very friendly (statically linked binaries, all separate) is predominantly bottlenecked by back-to-back per-cpu counter allocations which serialize on global locks. Ease the pain by allocating and freeing them in one go. Bench can be found here: http://apollo.backplane.com/DFlyMisc/doexec.c $ cc -static -O2 -o static-doexec doexec.c $ ./static-doexec $(nproc) Even at a very modest scale of 26 cores (ops/s): before: 133543.63 after: 186061.81 (+39%) While with the patch these allocations remain a significant problem, the primary bottleneck shifts to page release handling. Signed-off-by:
Mateusz Guzik <mjguzik@gmail.com> Link: https://lore.kernel.org/r/20230823050609.2228718-3-mjguzik@gmail.com [Dennis: reflowed 1 line] Signed-off-by:
Dennis Zhou <dennis@kernel.org>
-
- Aug 21, 2023
-
-
Mateusz Guzik authored
xchg originated in 6e399cd1 ("prctl: avoid using mmap_sem for exe_file serialization"). While the commit message does not explain *why* the change, I found the original submission [1] which ultimately claims it cleans things up by removing dependency of exe_file on the semaphore. However, fe69d560 ("kernel/fork: always deny write access to current MM exe_file") added a semaphore up/down cycle to synchronize the state of exe_file against fork, defeating the point of the original change. This is on top of semaphore trips already present both in the replacing function and prctl (the only consumer). Normally replacing exe_file does not happen for busy processes, thus write-locking is not an impediment to performance in the intended use case. If someone keeps invoking the routine for a busy processes they are trying to play dirty and that's another reason to avoid any trickery. As such I think the atomic here only adds complexity for no benefit. Just write-lock around the replacement. I also note that replacement races against the mapping check loop as nothing synchronizes actual assignment with with said checks but I am not addressing it in this patch. (Is the loop of any use to begin with?) Link: https://lore.kernel.org/linux-mm/1424979417.10344.14.camel@stgolabs.net/ [1] Link: https://lkml.kernel.org/r/20230814172140.1777161-1-mjguzik@gmail.com Signed-off-by:
Mateusz Guzik <mjguzik@gmail.com> Acked-by:
Oleg Nesterov <oleg@redhat.com> Acked-by:
David Hildenbrand <david@redhat.com> Cc: "Christian Brauner (Microsoft)" <brauner@kernel.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mateusz Guzik <mjguzik@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Jul 13, 2023
-
-
Wander Lairson Costa authored
Under PREEMPT_RT, __put_task_struct() indirectly acquires sleeping locks. Therefore, it can't be called from an non-preemptible context. One practical example is splat inside inactive_task_timer(), which is called in a interrupt context: CPU: 1 PID: 2848 Comm: life Kdump: loaded Tainted: G W --------- Hardware name: HP ProLiant DL388p Gen8, BIOS P70 07/15/2012 Call Trace: dump_stack_lvl+0x57/0x7d mark_lock_irq.cold+0x33/0xba mark_lock+0x1e7/0x400 mark_usage+0x11d/0x140 __lock_acquire+0x30d/0x930 lock_acquire.part.0+0x9c/0x210 rt_spin_lock+0x27/0xe0 refill_obj_stock+0x3d/0x3a0 kmem_cache_free+0x357/0x560 inactive_task_timer+0x1ad/0x340 __run_hrtimer+0x8a/0x1a0 __hrtimer_run_queues+0x91/0x130 hrtimer_interrupt+0x10f/0x220 __sysvec_apic_timer_interrupt+0x7b/0xd0 sysvec_apic_timer_interrupt+0x4f/0xd0 asm_sysvec_apic_timer_interrupt+0x12/0x20 RIP: 0033:0x7fff196bf6f5 Instead of calling __put_task_struct() directly, we defer it using call_rcu(). A more natural approach would use a workqueue, but since in PREEMPT_RT, we can't allocate dynamic memory from atomic context, the code would become more complex because we would need to put the work_struct instance in the task_struct and initialize it when we allocate a new task_struct. The issue is reproducible with stress-ng: while true; do stress-ng --sched deadline --sched-period 1000000000 \ --sched-runtime 800000000 --sched-deadline \ 1000000000 --mmapfork 23 -t 20 done Reported-by:
Hu Chunyu <chuhu@redhat.com> Suggested-by:
Oleg Nesterov <oleg@redhat.com> Suggested-by:
Valentin Schneider <vschneid@redhat.com> Suggested-by:
Peter Zijlstra <peterz@infradead.org> Signed-off-by:
Wander Lairson Costa <wander@redhat.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230614122323.37957-2-wander@redhat.com
-
- Jul 08, 2023
-
-
Suren Baghdasaryan authored
When forking a child process, the parent write-protects anonymous pages and COW-shares them with the child being forked using copy_present_pte(). We must not take any concurrent page faults on the source vma's as they are being processed, as we expect both the vma and the pte's behind it to be stable. For example, the anon_vma_fork() expects the parents vma->anon_vma to not change during the vma copy. A concurrent page fault on a page newly marked read-only by the page copy might trigger wp_page_copy() and a anon_vma_prepare(vma) on the source vma, defeating the anon_vma_clone() that wasn't done because the parent vma originally didn't have an anon_vma, but we now might end up copying a pte entry for a page that has one. Before the per-vma lock based changes, the mmap_lock guaranteed exclusion with concurrent page faults. But now we need to do a vma_start_write() to make sure no concurrent faults happen on this vma while it is being processed. This fix can potentially regress some fork-heavy workloads. Kernel build time did not show noticeable regression on a 56-core machine while a stress test mapping 10000 VMAs and forking 5000 times in a tight loop shows ~5% regression. If such fork time regression is unacceptable, disabling CONFIG_PER_VMA_LOCK should restore its performance. Further optimizations are possible if this regression proves to be problematic. Suggested-by:
David Hildenbrand <david@redhat.com> Reported-by:
Jiri Slaby <jirislaby@kernel.org> Closes: https://lore.kernel.org/all/dbdef34c-3a07-5951-e1ae-e9c6e3cdf51b@kernel.org/ Reported-by:
Holger Hoffstätte <holger@applied-asynchrony.com> Closes: https://lore.kernel.org/all/b198d649-f4bf-b971-31d0-e8433ec2a34c@applied-asynchrony.com/ Reported-by:
Jacob Young <jacobly.alt@gmail.com> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217624 Fixes: 0bff0aae ("x86/mm: try VMA lock-based page fault handling first") Cc: stable@vger.kernel.org Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Suren Baghdasaryan authored
Patch series "Avoid memory corruption caused by per-VMA locks", v4. A memory corruption was reported in [1] with bisection pointing to the patch [2] enabling per-VMA locks for x86. Based on the reproducer provided in [1] we suspect this is caused by the lack of VMA locking while forking a child process. Patch 1/2 in the series implements proper VMA locking during fork. I tested the fix locally using the reproducer and was unable to reproduce the memory corruption problem. This fix can potentially regress some fork-heavy workloads. Kernel build time did not show noticeable regression on a 56-core machine while a stress test mapping 10000 VMAs and forking 5000 times in a tight loop shows ~7% regression. If such fork time regression is unacceptable, disabling CONFIG_PER_VMA_LOCK should restore its performance. Further optimizations are possible if this regression proves to be problematic. Patch 2/2 disables per-VMA locks until the fix is tested and verified. This patch (of 2): When forking a child process, parent write-protects an anonymous page and COW-shares it with the child being forked using copy_present_pte(). Parent's TLB is flushed right before we drop the parent's mmap_lock in dup_mmap(). If we get a write-fault before that TLB flush in the parent, and we end up replacing that anonymous page in the parent process in do_wp_page() (because, COW-shared with the child), this might lead to some stale writable TLB entries targeting the wrong (old) page. Similar issue happened in the past with userfaultfd (see flush_tlb_page() call inside do_wp_page()). Lock VMAs of the parent process when forking a child, which prevents concurrent page faults during fork operation and avoids this issue. This fix can potentially regress some fork-heavy workloads. Kernel build time did not show noticeable regression on a 56-core machine while a stress test mapping 10000 VMAs and forking 5000 times in a tight loop shows ~7% regression. If such fork time regression is unacceptable, disabling CONFIG_PER_VMA_LOCK should restore its performance. Further optimizations are possible if this regression proves to be problematic. Link: https://lkml.kernel.org/r/20230706011400.2949242-1-surenb@google.com Link: https://lkml.kernel.org/r/20230706011400.2949242-2-surenb@google.com Fixes: 0bff0aae ("x86/mm: try VMA lock-based page fault handling first") Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Suggested-by:
David Hildenbrand <david@redhat.com> Reported-by:
Jiri Slaby <jirislaby@kernel.org> Closes: https://lore.kernel.org/all/dbdef34c-3a07-5951-e1ae-e9c6e3cdf51b@kernel.org/ Reported-by:
Holger Hoffstätte <holger@applied-asynchrony.com> Closes: https://lore.kernel.org/all/b198d649-f4bf-b971-31d0-e8433ec2a34c@applied-asynchrony.com/ Reported-by:
Jacob Young <jacobly.alt@gmail.com> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=3D217624 Reviewed-by:
Liam R. Howlett <Liam.Howlett@oracle.com> Acked-by:
David Hildenbrand <david@redhat.com> Tested-by:
Holger Hoffsttte <holger@applied-asynchrony.com> Cc: <stable@vger.kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Jun 10, 2023
-
-
Haifeng Xu authored
Since commit f1c1a9ee ("fork: Move memcg_charge_kernel_stack() into CONFIG_VMAP_STACK"), memcg_charge_kernel_stack() has been moved into CONFIG_VMAP_STACK block, so the CONFIG_VMAP_STACK check can be removed. Furthermore, memcg_charge_kernel_stack() is only invoked by alloc_thread_stack_node() instead of dup_task_struct(). If memcg_kmem_charge_page() fails, the uncharge process is handled in memcg_charge_kernel_stack() itself instead of free_thread_stack(), so remove the incorrect comments. If memcg_charge_kernel_stack() fails to charge pages used by kernel stack, only charged pages need to be uncharged. It's unnecessary to uncharge those pages which memory cgroup pointer is NULL. [akpm@linux-foundation.org: remove assertion that PAGE_SIZE is a multiple of 1k] Link: https://lkml.kernel.org/r/20230508064458.32855-1-haifeng.xu@shopee.com Signed-off-by:
Haifeng Xu <haifeng.xu@shopee.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Jun 02, 2023
-
-
KP Singh authored
When task local storage was generalized for tracing programs, the bpf_task_local_storage callback was moved from a BPF LSM hook callback for security_task_free LSM hook to it's own callback. But a failure case in bad_fork_cleanup_security was missed which, when triggered, led to a dangling task owner pointer and a subsequent use-after-free. Move the bpf_task_storage_free to the very end of free_task to handle all failure cases. This issue was noticed when a BPF LSM program was attached to the task_alloc hook on a kernel with KASAN enabled. The program used bpf_task_storage_get to copy the task local storage from the current task to the new task being created. Fixes: a10787e6 ("bpf: Enable task local storage for tracing programs") Reported-by:
Kuba Piecuch <jpiecuch@google.com> Signed-off-by:
KP Singh <kpsingh@kernel.org> Acked-by:
Song Liu <song@kernel.org> Link: https://lore.kernel.org/r/20230602002612.1117381-1-kpsingh@kernel.org Signed-off-by:
Martin KaFai Lau <martin.lau@kernel.org>
-
- Jun 01, 2023
-
-
Mike Christie authored
When switching from kthreads to vhost_tasks two bugs were added: 1. The vhost worker tasks's now show up as processes so scripts doing ps or ps a would not incorrectly detect the vhost task as another process. 2. kthreads disabled freeze by setting PF_NOFREEZE, but vhost tasks's didn't disable or add support for them. To fix both bugs, this switches the vhost task to be thread in the process that does the VHOST_SET_OWNER ioctl, and has vhost_worker call get_signal to support SIGKILL/SIGSTOP and freeze signals. Note that SIGKILL/STOP support is required because CLONE_THREAD requires CLONE_SIGHAND which requires those 2 signals to be supported. This is a modified version of the patch written by Mike Christie <michael.christie@oracle.com> which was a modified version of patch originally written by Linus. Much of what depended upon PF_IO_WORKER now depends on PF_USER_WORKER. Including ignoring signals, setting up the register state, and having get_signal return instead of calling do_group_exit. Tidied up the vhost_task abstraction so that the definition of vhost_task only needs to be visible inside of vhost_task.c. Making it easier to review the code and tell what needs to be done where. As part of this the main loop has been moved from vhost_worker into vhost_task_fn. vhost_worker now returns true if work was done. The main loop has been updated to call get_signal which handles SIGSTOP, freezing, and collects the message that tells the thread to exit as part of process exit. This collection clears __fatal_signal_pending. This collection is not guaranteed to clear signal_pending() so clear that explicitly so the schedule() sleeps. For now the vhost thread continues to exist and run work until the last file descriptor is closed and the release function is called as part of freeing struct file. To avoid hangs in the coredump rendezvous and when killing threads in a multi-threaded exec. The coredump code and de_thread have been modified to ignore vhost threads. Remvoing the special case for exec appears to require teaching vhost_dev_flush how to directly complete transactions in case the vhost thread is no longer running. Removing the special case for coredump rendezvous requires either the above fix needed for exec or moving the coredump rendezvous into get_signal. Fixes: 6e890c5d ("vhost: use vhost_tasks for worker threads") Signed-off-by:
Eric W. Biederman <ebiederm@xmission.com> Co-developed-by:
Mike Christie <michael.christie@oracle.com> Signed-off-by:
Mike Christie <michael.christie@oracle.com> Acked-by:
Michael S. Tsirkin <mst@redhat.com> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Apr 21, 2023
-
-
Mathieu Desnoyers authored
Introduce per-mm/cpu current concurrency id (mm_cid) to fix a PostgreSQL sysbench regression reported by Aaron Lu. Keep track of the currently allocated mm_cid for each mm/cpu rather than freeing them immediately on context switch. This eliminates most atomic operations when context switching back and forth between threads belonging to different memory spaces in multi-threaded scenarios (many processes, each with many threads). The per-mm/per-cpu mm_cid values are serialized by their respective runqueue locks. Thread migration is handled by introducing invocation to sched_mm_cid_migrate_to() (with destination runqueue lock held) in activate_task() for migrating tasks. If the destination cpu's mm_cid is unset, and if the source runqueue is not actively using its mm_cid, then the source cpu's mm_cid is moved to the destination cpu on migration. Introduce a task-work executed periodically, similarly to NUMA work, which delays reclaim of cid values when they are unused for a period of time. Keep track of the allocation time for each per-cpu cid, and let the task work clear them when they are observed to be older than SCHED_MM_CID_PERIOD_NS and unused. This task work also clears all mm_cids which are greater or equal to the Hamming weight of the mm cidmask to keep concurrency ids compact. Because we want to ensure the mm_cid converges towards the smaller values as migrations happen, the prior optimization that was done when context switching between threads belonging to the same mm is removed, because it could delay the lazy release of the destination runqueue mm_cid after it has been replaced by a migration. Removing this prior optimization is not an issue performance-wise because the introduced per-mm/per-cpu mm_cid tracking also covers this more specific case. Fixes: af7f588d ("sched: Introduce per-memory-map concurrency ID") Reported-by:
Aaron Lu <aaron.lu@intel.com> Signed-off-by:
Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by:
Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by:
Aaron Lu <aaron.lu@intel.com> Link: https://lore.kernel.org/lkml/20230327080502.GA570847@ziqianlu-desk2/
-
- Apr 18, 2023
-
-
Mathieu Desnoyers authored
commit f1a79412 ("mm: convert mm's rss stats into percpu_counter") introduces a memory leak by missing a call to destroy_context() when a percpu_counter fails to allocate. Before introducing the per-cpu counter allocations, init_new_context() was the last call that could fail in mm_init(), and thus there was no need to ever invoke destroy_context() in the error paths. Adding the following percpu counter allocations adds error paths after init_new_context(), which means its associated destroy_context() needs to be called when percpu counters fail to allocate. Link: https://lkml.kernel.org/r/20230330133822.66271-1-mathieu.desnoyers@efficios.com Fixes: f1a79412 ("mm: convert mm's rss stats into percpu_counter") Signed-off-by:
Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by:
Shakeel Butt <shakeelb@google.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: <stable@vger.kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Apr 06, 2023
-
-
Mel Gorman authored
Pach series "sched/numa: Enhance vma scanning", v3. The patchset proposes one of the enhancements to numa vma scanning suggested by Mel. This is continuation of [3]. Reposting the rebased patchset to akpm mm-unstable tree (March 1) Existing mechanism of scan period involves, scan period derived from per-thread stats. Process Adaptive autoNUMA [1] proposed to gather NUMA fault stats at per-process level to capture aplication behaviour better. During that course of discussion, Mel proposed several ideas to enhance current numa balancing. One of the suggestion was below Track what threads access a VMA. The suggestion was to use an unsigned long pid_mask and use the lower bits to tag approximately what threads access a VMA. Skip VMAs that did not trap a fault. This would be approximate because of PID collisions but would reduce scanning of areas the thread is not interested in. The above suggestion intends not to penalize threads that has no interest in the vma, thus reduce scanning overhead. V3 changes are mostly based on PeterZ comments (details below in changes) Summary of patchset: Current patchset implements: 1. Delay the vma scanning logic for newly created VMA's so that additional overhead of scanning is not incurred for short lived tasks (implementation by Mel) 2. Store the information of tasks accessing VMA in 2 windows. It is regularly cleared in (4*sysctl_numa_balancing_scan_delay) interval. The above time is derived from experimenting (Suggested by PeterZ) to balance between frequent clearing vs obsolete access data 3. hash_32 used to encode task index accessing VMA information 4. VMA's acess information is used to skip scanning for the tasks which had not accessed VMA Changes since V2: patch1: - Renaming of structure, macro to function, - Add explanation to heuristics - Adding more details from result (PeterZ) Patch2: - Usage of test and set bit (PeterZ) - Move storing access PID info to numa_migrate_prep() - Add a note on fainess among tasks allowed to scan (PeterZ) Patch3: - Maintain two windows of access PID information (PeterZ supported implementation and Gave idea to extend to N if needed) Patch4: - Apply hash_32 function to track VMA accessing PIDs (PeterZ) Changes since RFC V1: - Include Mel's vma scan delay patch - Change the accessing pid store logic (Thanks Mel) - Fencing structure / code to NUMA_BALANCING (David, Mel) - Adding clearing access PID logic (Mel) - Descriptive change log ( Mike Rapoport) Things to ponder over: ========================================== - Improvement to clearing accessing PIDs logic (discussed in-detail in patch3 itself (Done in this patchset by implementing 2 window history) - Current scan period is not changed in the patchset, so we do see frequent tries to scan. Relaxing scan period dynamically could improve results further. [1] sched/numa: Process Adaptive autoNUMA Link: https://lore.kernel.org/lkml/20220128052851.17162-1-bharata@amd.com/T/ [2] RFC V1 Link: https://lore.kernel.org/all/cover.1673610485.git.raghavendra.kt@amd.com/ [3] V2 Link: https://lore.kernel.org/lkml/cover.1675159422.git.raghavendra.kt@amd.com/ Results: Summary: Huge autonuma cost reduction seen in mmtest. Kernbench improvement is more than 5% and huge system time (80%+) improvement from mmtest autonuma. (dbench had huge std deviation to post) kernbench =========== 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Amean user-256 22002.51 ( 0.00%) 22649.95 * -2.94%* Amean syst-256 10162.78 ( 0.00%) 8214.13 * 19.17%* Amean elsp-256 160.74 ( 0.00%) 156.92 * 2.38%* Duration User 66017.43 67959.84 Duration System 30503.15 24657.03 Duration Elapsed 504.61 493.12 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Ops NUMA alloc hit 1738835089.00 1738780310.00 Ops NUMA alloc local 1738834448.00 1738779711.00 Ops NUMA base-page range updates 477310.00 392566.00 Ops NUMA PTE updates 477310.00 392566.00 Ops NUMA hint faults 96817.00 87555.00 Ops NUMA hint local faults % 10150.00 2192.00 Ops NUMA hint local percent 10.48 2.50 Ops NUMA pages migrated 86660.00 85363.00 Ops AutoNUMA cost 489.07 442.14 autonumabench =============== 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Amean syst-NUMA01 399.50 ( 0.00%) 52.05 * 86.97%* Amean syst-NUMA01_THREADLOCAL 0.21 ( 0.00%) 0.22 * -5.41%* Amean syst-NUMA02 0.80 ( 0.00%) 0.78 * 2.68%* Amean syst-NUMA02_SMT 0.65 ( 0.00%) 0.68 * -3.95%* Amean elsp-NUMA01 313.26 ( 0.00%) 313.11 * 0.05%* Amean elsp-NUMA01_THREADLOCAL 1.06 ( 0.00%) 1.08 * -1.76%* Amean elsp-NUMA02 3.19 ( 0.00%) 3.24 * -1.52%* Amean elsp-NUMA02_SMT 3.72 ( 0.00%) 3.61 * 2.92%* Duration User 396433.47 324835.96 Duration System 2808.70 376.66 Duration Elapsed 2258.61 2258.12 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Ops NUMA alloc hit 59921806.00 49623489.00 Ops NUMA alloc miss 0.00 0.00 Ops NUMA interleave hit 0.00 0.00 Ops NUMA alloc local 59920880.00 49622594.00 Ops NUMA base-page range updates 152259275.00 50075.00 Ops NUMA PTE updates 152259275.00 50075.00 Ops NUMA PMD updates 0.00 0.00 Ops NUMA hint faults 154660352.00 39014.00 Ops NUMA hint local faults % 138550501.00 23139.00 Ops NUMA hint local percent 89.58 59.31 Ops NUMA pages migrated 8179067.00 14147.00 Ops AutoNUMA cost 774522.98 195.69 This patch (of 4): Currently whenever a new task is created we wait for sysctl_numa_balancing_scan_delay to avoid unnessary scanning overhead. Extend the same logic to new or very short-lived VMAs. [raghavendra.kt@amd.com: add initialization in vm_area_dup())] Link: https://lkml.kernel.org/r/cover.1677672277.git.raghavendra.kt@amd.com Link: https://lkml.kernel.org/r/7a6fbba87c8b51e67efd3e74285bb4cb311a16ca.1677672277.git.raghavendra.kt@amd.com Signed-off-by:
Mel Gorman <mgorman@techsingularity.net> Signed-off-by:
Raghavendra K T <raghavendra.kt@amd.com> Cc: Bharata B Rao <bharata@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Disha Talreja <dishaa.talreja@amd.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Suren Baghdasaryan authored
vma->lock being part of the vm_area_struct causes performance regression during page faults because during contention its count and owner fields are constantly updated and having other parts of vm_area_struct used during page fault handling next to them causes constant cache line bouncing. Fix that by moving the lock outside of the vm_area_struct. All attempts to keep vma->lock inside vm_area_struct in a separate cache line still produce performance regression especially on NUMA machines. Smallest regression was achieved when lock is placed in the fourth cache line but that bloats vm_area_struct to 256 bytes. Considering performance and memory impact, separate lock looks like the best option. It increases memory footprint of each VMA but that can be optimized later if the new size causes issues. Note that after this change vma_init() does not allocate or initialize vma->lock anymore. A number of drivers allocate a pseudo VMA on the stack but they never use the VMA's lock, therefore it does not need to be allocated. The future drivers which might need the VMA lock should use vm_area_alloc()/vm_area_free() to allocate the VMA. Link: https://lkml.kernel.org/r/20230227173632.3292573-34-surenb@google.com Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Suren Baghdasaryan authored
call_rcu() can take a long time when callback offloading is enabled. Its use in the vm_area_free can cause regressions in the exit path when multiple VMAs are being freed. Because exit_mmap() is called only after the last mm user drops its refcount, the page fault handlers can't be racing with it. Any other possible user like oom-reaper or process_mrelease are already synchronized using mmap_lock. Therefore exit_mmap() can free VMAs directly, without the use of call_rcu(). Expose __vm_area_free() and use it from exit_mmap() to avoid possible call_rcu() floods and performance regressions caused by it. Link: https://lkml.kernel.org/r/20230227173632.3292573-33-surenb@google.com Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Suren Baghdasaryan authored
Assert there are no holders of VMA lock for reading when it is about to be destroyed. Link: https://lkml.kernel.org/r/20230227173632.3292573-21-surenb@google.com Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Suren Baghdasaryan authored
Introduce per-VMA locking. The lock implementation relies on a per-vma and per-mm sequence counters to note exclusive locking: - read lock - (implemented by vma_start_read) requires the vma (vm_lock_seq) and mm (mm_lock_seq) sequence counters to differ. If they match then there must be a vma exclusive lock held somewhere. - read unlock - (implemented by vma_end_read) is a trivial vma->lock unlock. - write lock - (vma_start_write) requires the mmap_lock to be held exclusively and the current mm counter is assigned to the vma counter. This will allow multiple vmas to be locked under a single mmap_lock write lock (e.g. during vma merging). The vma counter is modified under exclusive vma lock. - write unlock - (vma_end_write_all) is a batch release of all vma locks held. It doesn't pair with a specific vma_start_write! It is done before exclusive mmap_lock is released by incrementing mm sequence counter (mm_lock_seq). - write downgrade - if the mmap_lock is downgraded to the read lock, all vma write locks are released as well (effectivelly same as write unlock). Link: https://lkml.kernel.org/r/20230227173632.3292573-13-surenb@google.com Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Michel Lespinasse authored
This prepares for page faults handling under VMA lock, looking up VMAs under protection of an rcu read lock, instead of the usual mmap read lock. Link: https://lkml.kernel.org/r/20230227173632.3292573-11-surenb@google.com Signed-off-by:
Michel Lespinasse <michel@lespinasse.org> Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Use the maple tree in RCU mode for VMA tracking. The maple tree tracks the stack and is able to update the pivot (lower/upper boundary) in-place to allow the page fault handler to write to the tree while holding just the mmap read lock. This is safe as the writes to the stack have a guard VMA which ensures there will always be a NULL in the direction of the growth and thus will only update a pivot. It is possible, but not recommended, to have VMAs that grow up/down without guard VMAs. syzbot has constructed a testcase which sets up a VMA to grow and consume the empty space. Overwriting the entire NULL entry causes the tree to be altered in a way that is not safe for concurrent readers; the readers may see a node being rewritten or one that does not match the maple state they are using. Enabling RCU mode allows the concurrent readers to see a stable node and will return the expected result. [Liam.Howlett@Oracle.com: we don't need to free the nodes with RCU[ Link: https://lore.kernel.org/linux-mm/000000000000b0a65805f663ace6@google.com/ Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com Fixes: d4af56c5 ("mm: start tracking VMAs with maple tree") Signed-off-by:
Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by:
Suren Baghdasaryan <surenb@google.com> Reported-by:
<syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com> Cc: <stable@vger.kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Apr 03, 2023
-
-
Christian Brauner authored
Stop open-coding get_unused_fd_flags() and anon_inode_getfile(). That's brittle just for keeping the flags between both calls in sync. Use the dedicated helper. Message-Id: <20230327-pidfd-file-api-v1-2-5c0e9a3158e4@kernel.org> Signed-off-by:
Christian Brauner <brauner@kernel.org>
-
Christian Brauner authored
Add a new helper that allows to reserve a pidfd and allocates a new pidfd file that stashes the provided struct pid. This will allow us to remove places that either open code this function or that call pidfd_create() but then have to call close_fd() because there are still failure points after pidfd_create() has been called. Reviewed-by:
Jan Kara <jack@suse.cz> Message-Id: <20230327-pidfd-file-api-v1-1-5c0e9a3158e4@kernel.org> Signed-off-by:
Christian Brauner <brauner@kernel.org>
-
- Mar 31, 2023
-
-
Jacob Pan authored
Preparing to remove IOASID infrastructure, PASID management will be under SVA code. Decouple mm code from IOASID. Reviewed-by:
Jason Gunthorpe <jgg@nvidia.com> Signed-off-by:
Jacob Pan <jacob.jun.pan@linux.intel.com> Reviewed-by:
Kevin Tian <kevin.tian@intel.com> Link: https://lore.kernel.org/r/20230322200803.869130-3-jacob.jun.pan@linux.intel.com Signed-off-by:
Joerg Roedel <jroedel@suse.de>
-
- Mar 29, 2023
-
-
Beau Belgrave authored
During tracefs discussions it was decided instead of requiring a mapping within a user-process to track the lifetime of memory descriptors we should hook the appropriate calls. Do this by adding the minimal stubs required for task fork, exec, and exit. Currently this is just a NOP. Future patches will implement these calls fully. Link: https://lkml.kernel.org/r/20230328235219.203-3-beaub@linux.microsoft.com Suggested-by:
Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by:
Beau Belgrave <beaub@linux.microsoft.com> Signed-off-by:
Steven Rostedt (Google) <rostedt@goodmis.org>
-
- Mar 28, 2023
-
-
Nicholas Piggin authored
On big systems, the mm refcount can become highly contented when doing a lot of context switching with threaded applications. user<->idle switch is one of the important cases. Abandoning lazy tlb entirely slows this switching down quite a bit in the common uncontended case, so that is not viable. Implement a scheme where lazy tlb mm references do not contribute to the refcount, instead they get explicitly removed when the refcount reaches zero. The final mmdrop() sends IPIs to all CPUs in the mm_cpumask and they switch away from this mm to init_mm if it was being used as the lazy tlb mm. Enabling the shoot lazies option therefore requires that the arch ensures that mm_cpumask contains all CPUs that could possibly be using mm. A DEBUG_VM option IPIs every CPU in the system after this to ensure there are no references remaining before the mm is freed. Shootdown IPIs cost could be an issue, but they have not been observed to be a serious problem with this scheme, because short-lived processes tend not to migrate CPUs much, therefore they don't get much chance to leave lazy tlb mm references on remote CPUs. There are a lot of options to reduce them if necessary, described in comments. The near-worst-case can be benchmarked with will-it-scale: context_switch1_threads -t $(($(nproc) / 2)) This will create nproc threads (nproc / 2 switching pairs) all sharing the same mm that spread over all CPUs so each CPU does thread->idle->thread switching. [ Rik came up with basically the same idea a few years ago, so credit to him for that. ] Link: https://lore.kernel.org/linux-mm/20230118080011.2258375-1-npiggin@gmail.com/ Link: https://lore.kernel.org/all/20180728215357.3249-11-riel@surriel.com/ Link: https://lkml.kernel.org/r/20230203071837.1136453-5-npiggin@gmail.com Signed-off-by:
Nicholas Piggin <npiggin@gmail.com> Acked-by:
Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org>
-
- Mar 19, 2023
-
-
Dave Chinner authored
This effectively reverts the change made in commit f689054a ("percpu_counter: add percpu_counter_sum_all interface") as the race condition percpu_counter_sum_all() was invented to avoid is now handled directly in percpu_counter_sum() and nobody needs to care about summing racing with cpu unplug anymore. Signed-off-by:
Dave Chinner <dchinner@redhat.com> Reviewed-by:
Darrick J. Wong <djwong@kernel.org> Signed-off-by:
Darrick J. Wong <djwong@kernel.org>
-
- Mar 12, 2023
-
-
Mike Christie authored
The next patch adds helpers like create_io_thread, but for use by the vhost layer. There are several functions, so they are in their own file instead of cluttering up fork.c. This patch allows that new file to call copy_process. Signed-off-by:
Mike Christie <michael.christie@oracle.com> Acked-by:
Michael S. Tsirkin <mst@redhat.com> Signed-off-by:
Christian Brauner (Microsoft) <brauner@kernel.org>
-