core.c 59.1 KB
Newer Older
1
/*
2
 * Performance events x86 architecture code
3
 *
4 5 6 7
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9
 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10
 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11 12 13 14
 *
 *  For licencing details see kernel-base/COPYING
 */

15
#include <linux/perf_event.h>
16 17 18 19
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
20 21
#include <linux/export.h>
#include <linux/init.h>
22
#include <linux/kdebug.h>
23
#include <linux/sched/mm.h>
24
#include <linux/sched/clock.h>
25
#include <linux/uaccess.h>
26
#include <linux/slab.h>
27
#include <linux/cpu.h>
28
#include <linux/bitops.h>
29
#include <linux/device.h>
30 31

#include <asm/apic.h>
32
#include <asm/stacktrace.h>
Peter Zijlstra's avatar
Peter Zijlstra committed
33
#include <asm/nmi.h>
34
#include <asm/smp.h>
35
#include <asm/alternative.h>
36
#include <asm/mmu_context.h>
37
#include <asm/tlbflush.h>
38
#include <asm/timer.h>
39 40
#include <asm/desc.h>
#include <asm/ldt.h>
41
#include <asm/unwind.h>
42

43
#include "perf_event.h"
44 45

struct x86_pmu x86_pmu __read_mostly;
46

47
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
48 49
	.enabled = 1,
};
50

51 52
struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;

53
u64 __read_mostly hw_cache_event_ids
54 55 56
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];
57
u64 __read_mostly hw_cache_extra_regs
58 59 60
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];
61

62
/*
63 64
 * Propagate event elapsed time into the generic event.
 * Can only be executed on the CPU where the event is active.
65 66
 * Returns the delta events processed.
 */
67
u64 x86_perf_event_update(struct perf_event *event)
68
{
69
	struct hw_perf_event *hwc = &event->hw;
70
	int shift = 64 - x86_pmu.cntval_bits;
71
	u64 prev_raw_count, new_raw_count;
72
	int idx = hwc->idx;
73
	u64 delta;
74

75
	if (idx == INTEL_PMC_IDX_FIXED_BTS)
76 77
		return 0;

78
	/*
79
	 * Careful: an NMI might modify the previous event value.
80 81 82
	 *
	 * Our tactic to handle this is to first atomically read and
	 * exchange a new raw count - then add that new-prev delta
83
	 * count to the generic event atomically:
84 85
	 */
again:
86
	prev_raw_count = local64_read(&hwc->prev_count);
87
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
88

89
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
90 91 92 93 94 95
					new_raw_count) != prev_raw_count)
		goto again;

	/*
	 * Now we have the new raw value and have updated the prev
	 * timestamp already. We can now calculate the elapsed delta
96
	 * (event-)time and add that to the generic event.
97 98
	 *
	 * Careful, not all hw sign-extends above the physical width
99
	 * of the count.
100
	 */
101 102
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;
103

104 105
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
106 107

	return new_raw_count;
108 109
}

110 111 112 113 114
/*
 * Find and validate any extra registers to set up.
 */
static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
{
115
	struct hw_perf_event_extra *reg;
116 117
	struct extra_reg *er;

118
	reg = &event->hw.extra_reg;
119 120 121 122 123 124 125 126 127

	if (!x86_pmu.extra_regs)
		return 0;

	for (er = x86_pmu.extra_regs; er->msr; er++) {
		if (er->event != (config & er->config_mask))
			continue;
		if (event->attr.config1 & ~er->valid_mask)
			return -EINVAL;
128 129 130
		/* Check if the extra msrs can be safely accessed*/
		if (!er->extra_msr_access)
			return -ENXIO;
131 132 133 134

		reg->idx = er->idx;
		reg->config = event->attr.config1;
		reg->reg = er->msr;
135 136 137 138 139
		break;
	}
	return 0;
}

140
static atomic_t active_events;
141
static atomic_t pmc_refcount;
Peter Zijlstra's avatar
Peter Zijlstra committed
142 143
static DEFINE_MUTEX(pmc_reserve_mutex);

144 145
#ifdef CONFIG_X86_LOCAL_APIC

Peter Zijlstra's avatar
Peter Zijlstra committed
146 147 148 149
static bool reserve_pmc_hardware(void)
{
	int i;

150
	for (i = 0; i < x86_pmu.num_counters; i++) {
151
		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
Peter Zijlstra's avatar
Peter Zijlstra committed
152 153 154
			goto perfctr_fail;
	}

155
	for (i = 0; i < x86_pmu.num_counters; i++) {
156
		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
Peter Zijlstra's avatar
Peter Zijlstra committed
157 158 159 160 161 162 163
			goto eventsel_fail;
	}

	return true;

eventsel_fail:
	for (i--; i >= 0; i--)
164
		release_evntsel_nmi(x86_pmu_config_addr(i));
Peter Zijlstra's avatar
Peter Zijlstra committed
165

166
	i = x86_pmu.num_counters;
Peter Zijlstra's avatar
Peter Zijlstra committed
167 168 169

perfctr_fail:
	for (i--; i >= 0; i--)
170
		release_perfctr_nmi(x86_pmu_event_addr(i));
Peter Zijlstra's avatar
Peter Zijlstra committed
171 172 173 174 175 176 177 178

	return false;
}

static void release_pmc_hardware(void)
{
	int i;

179
	for (i = 0; i < x86_pmu.num_counters; i++) {
180 181
		release_perfctr_nmi(x86_pmu_event_addr(i));
		release_evntsel_nmi(x86_pmu_config_addr(i));
Peter Zijlstra's avatar
Peter Zijlstra committed
182 183 184
	}
}

185 186 187 188 189 190 191
#else

static bool reserve_pmc_hardware(void) { return true; }
static void release_pmc_hardware(void) {}

#endif

192 193
static bool check_hw_exists(void)
{
194 195
	u64 val, val_fail = -1, val_new= ~0;
	int i, reg, reg_fail = -1, ret = 0;
196
	int bios_fail = 0;
197
	int reg_safe = -1;
198

199 200 201 202 203
	/*
	 * Check to see if the BIOS enabled any of the counters, if so
	 * complain and bail.
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
204
		reg = x86_pmu_config_addr(i);
205 206 207
		ret = rdmsrl_safe(reg, &val);
		if (ret)
			goto msr_fail;
208 209 210 211
		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
			bios_fail = 1;
			val_fail = val;
			reg_fail = reg;
212 213
		} else {
			reg_safe = i;
214
		}
215 216 217 218 219 220 221 222
	}

	if (x86_pmu.num_counters_fixed) {
		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
		ret = rdmsrl_safe(reg, &val);
		if (ret)
			goto msr_fail;
		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
223 224 225 226 227
			if (val & (0x03 << i*4)) {
				bios_fail = 1;
				val_fail = val;
				reg_fail = reg;
			}
228 229 230
		}
	}

231 232 233 234 235 236 237 238 239 240 241
	/*
	 * If all the counters are enabled, the below test will always
	 * fail.  The tools will also become useless in this scenario.
	 * Just fail and disable the hardware counters.
	 */

	if (reg_safe == -1) {
		reg = reg_safe;
		goto msr_fail;
	}

242
	/*
243 244 245
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
246
	 */
247
	reg = x86_pmu_event_addr(reg_safe);
248 249 250
	if (rdmsrl_safe(reg, &val))
		goto msr_fail;
	val ^= 0xffffUL;
251 252
	ret = wrmsrl_safe(reg, val);
	ret |= rdmsrl_safe(reg, &val_new);
253
	if (ret || val != val_new)
254
		goto msr_fail;
255

256 257 258
	/*
	 * We still allow the PMU driver to operate:
	 */
259
	if (bios_fail) {
260 261 262
		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
			      reg_fail, val_fail);
263
	}
264 265

	return true;
266 267

msr_fail:
268 269 270 271 272 273 274
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
		pr_cont("PMU not available due to virtualization, using software events only.\n");
	} else {
		pr_cont("Broken PMU hardware detected, using software events only.\n");
		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
		       reg, val_new);
	}
275

276
	return false;
277 278
}

279
static void hw_perf_event_destroy(struct perf_event *event)
Peter Zijlstra's avatar
Peter Zijlstra committed
280
{
281
	x86_release_hardware();
282
	atomic_dec(&active_events);
Peter Zijlstra's avatar
Peter Zijlstra committed
283 284
}

285 286 287 288 289 290 291 292
void hw_perf_lbr_event_destroy(struct perf_event *event)
{
	hw_perf_event_destroy(event);

	/* undo the lbr/bts event accounting */
	x86_del_exclusive(x86_lbr_exclusive_lbr);
}

293 294 295 296 297
static inline int x86_pmu_initialized(void)
{
	return x86_pmu.handle_irq != NULL;
}

298
static inline int
299
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
300
{
301
	struct perf_event_attr *attr = &event->attr;
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	unsigned int cache_type, cache_op, cache_result;
	u64 config, val;

	config = attr->config;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	val = hw_cache_event_ids[cache_type][cache_op][cache_result];

	if (val == 0)
		return -ENOENT;

	if (val == -1)
		return -EINVAL;

	hwc->config |= val;
328 329
	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
	return x86_pmu_extra_regs(val, event);
330 331
}

332 333 334 335
int x86_reserve_hardware(void)
{
	int err = 0;

336
	if (!atomic_inc_not_zero(&pmc_refcount)) {
337
		mutex_lock(&pmc_reserve_mutex);
338
		if (atomic_read(&pmc_refcount) == 0) {
339 340 341 342 343 344
			if (!reserve_pmc_hardware())
				err = -EBUSY;
			else
				reserve_ds_buffers();
		}
		if (!err)
345
			atomic_inc(&pmc_refcount);
346 347 348 349 350 351 352 353
		mutex_unlock(&pmc_reserve_mutex);
	}

	return err;
}

void x86_release_hardware(void)
{
354
	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
355 356 357 358 359 360
		release_pmc_hardware();
		release_ds_buffers();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

361 362 363 364 365 366
/*
 * Check if we can create event of a certain type (that no conflicting events
 * are present).
 */
int x86_add_exclusive(unsigned int what)
{
367
	int i;
368

369 370 371 372 373
	/*
	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
	 * LBR and BTS are still mutually exclusive.
	 */
	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
374 375
		return 0;

376 377 378 379 380 381 382 383
	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
		mutex_lock(&pmc_reserve_mutex);
		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
				goto fail_unlock;
		}
		atomic_inc(&x86_pmu.lbr_exclusive[what]);
		mutex_unlock(&pmc_reserve_mutex);
384
	}
385

386 387
	atomic_inc(&active_events);
	return 0;
388

389
fail_unlock:
390
	mutex_unlock(&pmc_reserve_mutex);
391
	return -EBUSY;
392 393 394 395
}

void x86_del_exclusive(unsigned int what)
{
396
	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
397 398
		return;

399
	atomic_dec(&x86_pmu.lbr_exclusive[what]);
400
	atomic_dec(&active_events);
401 402
}

403
int x86_setup_perfctr(struct perf_event *event)
404 405 406 407 408
{
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
	u64 config;

409
	if (!is_sampling_event(event)) {
410 411
		hwc->sample_period = x86_pmu.max_period;
		hwc->last_period = hwc->sample_period;
412
		local64_set(&hwc->period_left, hwc->sample_period);
413 414 415
	}

	if (attr->type == PERF_TYPE_RAW)
416
		return x86_pmu_extra_regs(event->attr.config, event);
417 418

	if (attr->type == PERF_TYPE_HW_CACHE)
419
		return set_ext_hw_attr(hwc, event);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

	if (attr->config >= x86_pmu.max_events)
		return -EINVAL;

	/*
	 * The generic map:
	 */
	config = x86_pmu.event_map(attr->config);

	if (config == 0)
		return -ENOENT;

	if (config == -1LL)
		return -EINVAL;

	/*
	 * Branch tracing:
	 */
Peter Zijlstra's avatar
Peter Zijlstra committed
438 439
	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
	    !attr->freq && hwc->sample_period == 1) {
440
		/* BTS is not supported by this architecture. */
441
		if (!x86_pmu.bts_active)
442 443 444 445 446
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;
447 448 449 450 451 452

		/* disallow bts if conflicting events are present */
		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
			return -EBUSY;

		event->destroy = hw_perf_lbr_event_destroy;
453 454 455 456 457 458
	}

	hwc->config |= config;

	return 0;
}
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
/*
 * check that branch_sample_type is compatible with
 * settings needed for precise_ip > 1 which implies
 * using the LBR to capture ALL taken branches at the
 * priv levels of the measurement
 */
static inline int precise_br_compat(struct perf_event *event)
{
	u64 m = event->attr.branch_sample_type;
	u64 b = 0;

	/* must capture all branches */
	if (!(m & PERF_SAMPLE_BRANCH_ANY))
		return 0;

	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;

	if (!event->attr.exclude_user)
		b |= PERF_SAMPLE_BRANCH_USER;

	if (!event->attr.exclude_kernel)
		b |= PERF_SAMPLE_BRANCH_KERNEL;

	/*
	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
	 */

	return m == b;
}

490
int x86_pmu_hw_config(struct perf_event *event)
491
{
492 493 494 495
	if (event->attr.precise_ip) {
		int precise = 0;

		/* Support for constant skid */
496
		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
497 498
			precise++;

499
			/* Support for IP fixup */
Andi Kleen's avatar
Andi Kleen committed
500
			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
501
				precise++;
502 503 504

			if (x86_pmu.pebs_prec_dist)
				precise++;
505
		}
506 507 508

		if (event->attr.precise_ip > precise)
			return -EOPNOTSUPP;
509 510 511 512

		/* There's no sense in having PEBS for non sampling events: */
		if (!is_sampling_event(event))
			return -EINVAL;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	}
	/*
	 * check that PEBS LBR correction does not conflict with
	 * whatever the user is asking with attr->branch_sample_type
	 */
	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
		u64 *br_type = &event->attr.branch_sample_type;

		if (has_branch_stack(event)) {
			if (!precise_br_compat(event))
				return -EOPNOTSUPP;

			/* branch_sample_type is compatible */

		} else {
			/*
			 * user did not specify  branch_sample_type
			 *
			 * For PEBS fixups, we capture all
			 * the branches at the priv level of the
			 * event.
			 */
			*br_type = PERF_SAMPLE_BRANCH_ANY;

			if (!event->attr.exclude_user)
				*br_type |= PERF_SAMPLE_BRANCH_USER;

			if (!event->attr.exclude_kernel)
				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
542
		}
543 544
	}

545 546 547
	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
		event->attach_state |= PERF_ATTACH_TASK_DATA;

548 549 550 551
	/*
	 * Generate PMC IRQs:
	 * (keep 'enabled' bit clear for now)
	 */
552
	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
553 554 555 556

	/*
	 * Count user and OS events unless requested not to
	 */
557 558 559 560
	if (!event->attr.exclude_user)
		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
	if (!event->attr.exclude_kernel)
		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
561

562 563
	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
564

565 566 567 568 569 570
	if (event->attr.sample_period && x86_pmu.limit_period) {
		if (x86_pmu.limit_period(event, event->attr.sample_period) >
				event->attr.sample_period)
			return -EINVAL;
	}

571
	return x86_setup_perfctr(event);
572 573
}

574
/*
575
 * Setup the hardware configuration for a given attr_type
576
 */
577
static int __x86_pmu_event_init(struct perf_event *event)
578
{
Peter Zijlstra's avatar
Peter Zijlstra committed
579
	int err;
580

581 582
	if (!x86_pmu_initialized())
		return -ENODEV;
583

584
	err = x86_reserve_hardware();
Peter Zijlstra's avatar
Peter Zijlstra committed
585 586 587
	if (err)
		return err;

588
	atomic_inc(&active_events);
589
	event->destroy = hw_perf_event_destroy;
590

591 592 593
	event->hw.idx = -1;
	event->hw.last_cpu = -1;
	event->hw.last_tag = ~0ULL;
594

595 596
	/* mark unused */
	event->hw.extra_reg.idx = EXTRA_REG_NONE;
597 598
	event->hw.branch_reg.idx = EXTRA_REG_NONE;

599
	return x86_pmu.hw_config(event);
600 601
}

602
void x86_pmu_disable_all(void)
603
{
604
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
605 606
	int idx;

607
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
608 609
		u64 val;

610
		if (!test_bit(idx, cpuc->active_mask))
611
			continue;
612
		rdmsrl(x86_pmu_config_addr(idx), val);
613
		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
614
			continue;
615
		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
616
		wrmsrl(x86_pmu_config_addr(idx), val);
617 618 619
	}
}

620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 * after disable_all.
 *
 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 * handling the NMI, disable_all will be called, which will not change the
 * state either. If PMI hits after disable_all, the PMU is already disabled
 * before entering NMI handler. The NMI handler will not change the state
 * either.
 *
 * So either situation is harmless.
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
633
static void x86_pmu_disable(struct pmu *pmu)
634
{
635
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
636

637
	if (!x86_pmu_initialized())
638
		return;
639

640 641 642 643 644 645
	if (!cpuc->enabled)
		return;

	cpuc->n_added = 0;
	cpuc->enabled = 0;
	barrier();
646 647

	x86_pmu.disable_all();
648
}
649

650
void x86_pmu_enable_all(int added)
651
{
652
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
653 654
	int idx;

655
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
656
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
657

658
		if (!test_bit(idx, cpuc->active_mask))
659
			continue;
660

661
		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
662 663 664
	}
}

Peter Zijlstra's avatar
Peter Zijlstra committed
665
static struct pmu pmu;
666 667 668 669 670 671

static inline int is_x86_event(struct perf_event *event)
{
	return event->pmu == &pmu;
}

672 673 674 675 676 677 678 679 680 681 682 683
/*
 * Event scheduler state:
 *
 * Assign events iterating over all events and counters, beginning
 * with events with least weights first. Keep the current iterator
 * state in struct sched_state.
 */
struct sched_state {
	int	weight;
	int	event;		/* event index */
	int	counter;	/* counter index */
	int	unassigned;	/* number of events to be assigned left */
684
	int	nr_gp;		/* number of GP counters used */
685 686 687
	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
};

688 689 690
/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
#define	SCHED_STATES_MAX	2

691 692 693
struct perf_sched {
	int			max_weight;
	int			max_events;
694 695
	int			max_gp;
	int			saved_states;
696
	struct event_constraint	**constraints;
697
	struct sched_state	state;
698
	struct sched_state	saved[SCHED_STATES_MAX];
699 700 701 702 703
};

/*
 * Initialize interator that runs through all events and counters.
 */
704
static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
705
			    int num, int wmin, int wmax, int gpmax)
706 707 708 709 710 711
{
	int idx;

	memset(sched, 0, sizeof(*sched));
	sched->max_events	= num;
	sched->max_weight	= wmax;
712
	sched->max_gp		= gpmax;
713
	sched->constraints	= constraints;
714 715

	for (idx = 0; idx < num; idx++) {
716
		if (constraints[idx]->weight == wmin)
717 718 719 720 721 722 723 724
			break;
	}

	sched->state.event	= idx;		/* start with min weight */
	sched->state.weight	= wmin;
	sched->state.unassigned	= num;
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static void perf_sched_save_state(struct perf_sched *sched)
{
	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
		return;

	sched->saved[sched->saved_states] = sched->state;
	sched->saved_states++;
}

static bool perf_sched_restore_state(struct perf_sched *sched)
{
	if (!sched->saved_states)
		return false;

	sched->saved_states--;
	sched->state = sched->saved[sched->saved_states];

	/* continue with next counter: */
	clear_bit(sched->state.counter++, sched->state.used);

	return true;
}

748 749 750 751
/*
 * Select a counter for the current event to schedule. Return true on
 * success.
 */
752
static bool __perf_sched_find_counter(struct perf_sched *sched)
753 754 755 756 757 758 759 760 761 762
{
	struct event_constraint *c;
	int idx;

	if (!sched->state.unassigned)
		return false;

	if (sched->state.event >= sched->max_events)
		return false;

763
	c = sched->constraints[sched->state.event];
764
	/* Prefer fixed purpose counters */
765 766
	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
		idx = INTEL_PMC_IDX_FIXED;
767
		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
768 769 770 771
			if (!__test_and_set_bit(idx, sched->state.used))
				goto done;
		}
	}
772

773 774
	/* Grab the first unused counter starting with idx */
	idx = sched->state.counter;
775
	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
776 777 778 779
		if (!__test_and_set_bit(idx, sched->state.used)) {
			if (sched->state.nr_gp++ >= sched->max_gp)
				return false;

780
			goto done;
781
		}
782 783
	}

784 785 786 787
	return false;

done:
	sched->state.counter = idx;
788

789 790 791 792 793 794 795 796 797 798 799 800 801
	if (c->overlap)
		perf_sched_save_state(sched);

	return true;
}

static bool perf_sched_find_counter(struct perf_sched *sched)
{
	while (!__perf_sched_find_counter(sched)) {
		if (!perf_sched_restore_state(sched))
			return false;
	}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	return true;
}

/*
 * Go through all unassigned events and find the next one to schedule.
 * Take events with the least weight first. Return true on success.
 */
static bool perf_sched_next_event(struct perf_sched *sched)
{
	struct event_constraint *c;

	if (!sched->state.unassigned || !--sched->state.unassigned)
		return false;

	do {
		/* next event */
		sched->state.event++;
		if (sched->state.event >= sched->max_events) {
			/* next weight */
			sched->state.event = 0;
			sched->state.weight++;
			if (sched->state.weight > sched->max_weight)
				return false;
		}
826
		c = sched->constraints[sched->state.event];
827 828 829 830 831 832 833 834 835 836
	} while (c->weight != sched->state.weight);

	sched->state.counter = 0;	/* start with first counter */

	return true;
}

/*
 * Assign a counter for each event.
 */
837
int perf_assign_events(struct event_constraint **constraints, int n,
838
			int wmin, int wmax, int gpmax, int *assign)
839 840 841
{
	struct perf_sched sched;

842
	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
843 844 845 846 847 848 849 850 851 852

	do {
		if (!perf_sched_find_counter(&sched))
			break;	/* failed */
		if (assign)
			assign[sched.state.event] = sched.state.counter;
	} while (perf_sched_next_event(&sched));

	return sched.state.unassigned;
}
853
EXPORT_SYMBOL_GPL(perf_assign_events);
854

855
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
856
{
857
	struct event_constraint *c;
858
	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
859
	struct perf_event *e;
860
	int i, wmin, wmax, unsched = 0;
861 862 863 864
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, X86_PMC_IDX_MAX);

865 866 867
	if (x86_pmu.start_scheduling)
		x86_pmu.start_scheduling(cpuc);

868
	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
869
		cpuc->event_constraint[i] = NULL;
870
		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
871
		cpuc->event_constraint[i] = c;
872

873 874
		wmin = min(wmin, c->weight);
		wmax = max(wmax, c->weight);
875 876
	}

877 878 879
	/*
	 * fastpath, try to reuse previous register
	 */
880
	for (i = 0; i < n; i++) {
881
		hwc = &cpuc->event_list[i]->hw;
882
		c = cpuc->event_constraint[i];
883 884 885 886 887 888

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
889
		if (!test_bit(hwc->idx, c->idxmsk))
890 891 892 893 894 895
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

896
		__set_bit(hwc->idx, used_mask);
897 898 899 900
		if (assign)
			assign[i] = hwc->idx;
	}

901
	/* slow path */
902
	if (i != n) {
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
		int gpmax = x86_pmu.num_counters;

		/*
		 * Do not allow scheduling of more than half the available
		 * generic counters.
		 *
		 * This helps avoid counter starvation of sibling thread by
		 * ensuring at most half the counters cannot be in exclusive
		 * mode. There is no designated counters for the limits. Any
		 * N/2 counters can be used. This helps with events with
		 * specific counter constraints.
		 */
		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
			gpmax /= 2;

919
		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
920
					     wmax, gpmax, assign);
921
	}
922

923
	/*
924 925 926 927 928 929 930 931
	 * In case of success (unsched = 0), mark events as committed,
	 * so we do not put_constraint() in case new events are added
	 * and fail to be scheduled
	 *
	 * We invoke the lower level commit callback to lock the resource
	 *
	 * We do not need to do all of this in case we are called to
	 * validate an event group (assign == NULL)
932
	 */
933
	if (!unsched && assign) {
934 935 936
		for (i = 0; i < n; i++) {
			e = cpuc->event_list[i];
			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
937
			if (x86_pmu.commit_scheduling)
938
				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
939
		}
940
	} else {
941
		for (i = 0; i < n; i++) {
942 943 944 945 946 947 948 949
			e = cpuc->event_list[i];
			/*
			 * do not put_constraint() on comitted events,
			 * because they are good to go
			 */
			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
				continue;

950 951 952
			/*
			 * release events that failed scheduling
			 */
953
			if (x86_pmu.put_event_constraints)
954
				x86_pmu.put_event_constraints(cpuc, e);
955 956
		}
	}
957 958 959 960

	if (x86_pmu.stop_scheduling)
		x86_pmu.stop_scheduling(cpuc);

961
	return unsched ? -EINVAL : 0;
962 963 964 965 966 967 968 969 970 971 972
}

/*
 * dogrp: true if must collect siblings events (group)
 * returns total number of events and error code
 */
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
{
	struct perf_event *event;
	int n, max_count;

973
	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
974 975 976 977 978 979

	/* current number of events already accepted */
	n = cpuc->n_events;

	if (is_x86_event(leader)) {
		if (n >= max_count)
980
			return -EINVAL;
981 982 983 984 985 986 987 988
		cpuc->event_list[n] = leader;
		n++;
	}
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
		if (!is_x86_event(event) ||
989
		    event->state <= PERF_EVENT_STATE_OFF)
990 991 992
			continue;

		if (n >= max_count)
993
			return<