nvidia,tegra124-soctherm.txt 6.18 KB
Newer Older
1 2 3 4 5 6 7 8 9
Tegra124 SOCTHERM thermal management system

The SOCTHERM IP block contains thermal sensors, support for polled
or interrupt-based thermal monitoring, CPU and GPU throttling based
on temperature trip points, and handling external overcurrent
notifications. It is also used to manage emergency shutdown in an
overheating situation.

Required properties :
10 11 12
- compatible : For Tegra124, must contain "nvidia,tegra124-soctherm".
  For Tegra132, must contain "nvidia,tegra132-soctherm".
  For Tegra210, must contain "nvidia,tegra210-soctherm".
13
- reg : Should contain at least 2 entries for each entry in reg-names:
14
  - SOCTHERM register set
15 16 17 18 19 20
  - Tegra CAR register set: Required for Tegra124 and Tegra210.
  - CCROC register set: Required for Tegra132.
- reg-names :  Should contain at least 2 entries:
  - soctherm-reg
  - car-reg
  - ccroc-reg
21 22 23 24 25 26 27 28 29 30 31 32 33
- interrupts : Defines the interrupt used by SOCTHERM
- clocks : Must contain an entry for each entry in clock-names.
  See ../clocks/clock-bindings.txt for details.
- clock-names : Must include the following entries:
  - tsensor
  - soctherm
- resets : Must contain an entry for each entry in reset-names.
  See ../reset/reset.txt for details.
- reset-names : Must include the following entries:
  - soctherm
- #thermal-sensor-cells : Should be 1. See ./thermal.txt for a description
    of this property. See <dt-bindings/thermal/tegra124-soctherm.h> for a
    list of valid values when referring to thermal sensors.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
- throttle-cfgs: A sub-node which is a container of configuration for each
    hardware throttle events. These events can be set as cooling devices.
  * throttle events: Sub-nodes must be named as "light" or "heavy".
      Properties:
      - nvidia,priority: Each throttles has its own throttle settings, so the
        SW need to set priorities for various throttle, the HW arbiter can select
        the final throttle settings.
        Bigger value indicates higher priority, In general, higher priority
        translates to lower target frequency. SW needs to ensure that critical
        thermal alarms are given higher priority, and ensure that there is
        no race if priority of two vectors is set to the same value.
        The range of this value is 1~100.
      - nvidia,cpu-throt-percent: This property is for Tegra124 and Tegra210.
        It is the throttling depth of pulse skippers, it's the percentage
        throttling.
      - nvidia,cpu-throt-level: This property is only for Tegra132, it is the
        level of pulse skippers, which used to throttle clock frequencies. It
        indicates cpu clock throttling depth, and the depth can be programmed.
        Must set as following values:
        TEGRA_SOCTHERM_THROT_LEVEL_LOW, TEGRA_SOCTHERM_THROT_LEVEL_MED
        TEGRA_SOCTHERM_THROT_LEVEL_HIGH, TEGRA_SOCTHERM_THROT_LEVEL_NONE
      - #cooling-cells: Should be 1. This cooling device only support on/off state.
        See ./thermal.txt for a description of this property.
57

58 59 60 61
Note:
- the "critical" type trip points will be set to SOC_THERM hardware as the
shut down temperature. Once the temperature of this thermal zone is higher
than it, the system will be shutdown or reset by hardware.
62 63 64
- the "hot" type trip points will be set to SOC_THERM hardware as the throttle
temperature. Once the the temperature of this thermal zone is higher
than it, it will trigger the HW throttle event.
65 66 67

Example :

68
	soctherm@700e2000 {
69
		compatible = "nvidia,tegra124-soctherm";
70 71 72
		reg = <0x0 0x700e2000 0x0 0x600  /* SOC_THERM reg_base */
			0x0 0x60006000 0x0 0x400 /* CAR reg_base */
		reg-names = "soctherm-reg", "car-reg";
73 74 75 76 77 78 79 80
		interrupts = <GIC_SPI 48 IRQ_TYPE_LEVEL_HIGH>;
		clocks = <&tegra_car TEGRA124_CLK_TSENSOR>,
			<&tegra_car TEGRA124_CLK_SOC_THERM>;
		clock-names = "tsensor", "soctherm";
		resets = <&tegra_car 78>;
		reset-names = "soctherm";

		#thermal-sensor-cells = <1>;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

		throttle-cfgs {
			/*
			 * When the "heavy" cooling device triggered,
			 * the HW will skip cpu clock's pulse in 85% depth
			 */
			throttle_heavy: heavy {
				nvidia,priority = <100>;
				nvidia,cpu-throt-percent = <85>;

				#cooling-cells = <1>;
			};

			/*
			 * When the "light" cooling device triggered,
			 * the HW will skip cpu clock's pulse in 50% depth
			 */
			throttle_light: light {
				nvidia,priority = <80>;
				nvidia,cpu-throt-percent = <50>;

				#cooling-cells = <1>;
			};

			/*
			 * If these two devices are triggered in same time, the HW throttle
			 * arbiter will select the highest priority as the final throttle
			 * settings to skip cpu pulse.
			 */
		};
	};

Example: referring to Tegra132's "reg", "reg-names" and "throttle-cfgs" :

	soctherm@700e2000 {
		compatible = "nvidia,tegra132-soctherm";
		reg = <0x0 0x700e2000 0x0 0x600  /* SOC_THERM reg_base */
			0x0 0x70040000 0x0 0x200>; /* CCROC reg_base */;
		reg-names = "soctherm-reg", "ccroc-reg";

		throttle-cfgs {
			/*
			 * When the "heavy" cooling device triggered,
			 * the HW will skip cpu clock's pulse in HIGH level
			 */
			throttle_heavy: heavy {
				nvidia,priority = <100>;
				nvidia,cpu-throt-level = <TEGRA_SOCTHERM_THROT_LEVEL_HIGH>;

				#cooling-cells = <1>;
			};

			/*
			 * When the "light" cooling device triggered,
			 * the HW will skip cpu clock's pulse in MED level
			 */
			throttle_light: light {
				nvidia,priority = <80>;
				nvidia,cpu-throt-level = <TEGRA_SOCTHERM_THROT_LEVEL_MED>;

				#cooling-cells = <1>;
			};

			/*
			 * If these two devices are triggered in same time, the HW throttle
			 * arbiter will select the highest priority as the final throttle
			 * settings to skip cpu pulse.
			 */

		};
151 152 153 154 155 156 157 158 159 160 161
	};

Example: referring to thermal sensors :

       thermal-zones {
                cpu {
                        polling-delay-passive = <1000>;
                        polling-delay = <1000>;

                        thermal-sensors =
                                <&soctherm TEGRA124_SOCTHERM_SENSOR_CPU>;
162 163 164 165 166 167 168

			trips {
				cpu_shutdown_trip: shutdown-trip {
					temperature = <102500>;
					hysteresis = <1000>;
					type = "critical";
				};
169 170 171 172 173 174 175 176 177 178 179 180 181

				cpu_throttle_trip: throttle-trip {
					temperature = <100000>;
					hysteresis = <1000>;
					type = "hot";
				};
			};

			cooling-maps {
				map0 {
					trip = <&cpu_throttle_trip>;
					cooling-device = <&throttle_heavy 1 1>;
				};
182
			};
183 184
                };
	};