rcar_du_group.c 8.34 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4
/*
 * rcar_du_group.c  --  R-Car Display Unit Channels Pair
 *
5
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

/*
 * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending
 * unit, timings generator, ...) and device-global resources (start/stop
 * control, planes, ...) shared between the two CRTCs.
 *
 * The R8A7790 introduced a third CRTC with its own set of global resources.
 * This would be modeled as two separate DU device instances if it wasn't for
 * a handful or resources that are shared between the three CRTCs (mostly
 * related to input and output routing). For this reason the R8A7790 DU must be
 * modeled as a single device with three CRTCs, two sets of "semi-global"
 * resources, and a few device-global resources.
 *
 * The rcar_du_group object is a driver specific object, without any real
 * counterpart in the DU documentation, that models those semi-global resources.
 */

26
#include <linux/clk.h>
27 28 29 30 31 32
#include <linux/io.h>

#include "rcar_du_drv.h"
#include "rcar_du_group.h"
#include "rcar_du_regs.h"

33
u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg)
34 35 36 37
{
	return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg);
}

38
void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data)
39 40 41 42
{
	rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data);
}

43 44
static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp)
{
45
	u32 defr6 = DEFR6_CODE;
46

47 48 49 50
	if (rgrp->channels_mask & BIT(0))
		defr6 |= DEFR6_ODPM02_DISP;

	if (rgrp->channels_mask & BIT(1))
51
		defr6 |= DEFR6_ODPM12_DISP;
52 53 54 55

	rcar_du_group_write(rgrp, DEFR6, defr6);
}

56 57
static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp)
{
58 59
	struct rcar_du_device *rcdu = rgrp->dev;
	u32 defr8 = DEFR8_CODE;
60

61 62 63
	if (rcdu->info->gen < 3) {
		defr8 |= DEFR8_DEFE8;

64 65
		/*
		 * On Gen2 the DEFR8 register for the first group also controls
66 67 68 69
		 * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for
		 * DU instances that support it.
		 */
		if (rgrp->index == 0) {
70
			defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
71 72 73 74
			if (rgrp->dev->vspd1_sink == 2)
				defr8 |= DEFR8_VSCS;
		}
	} else {
75
		/*
76 77 78
		 * On Gen3 VSPD routing can't be configured, and DPAD routing
		 * is set in the group corresponding to the DPAD output (no Gen3
		 * SoC has multiple DPAD sources belonging to separate groups).
79
		 */
80 81
		if (rgrp->index == rcdu->dpad0_source / 2)
			defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
82
	}
83 84 85 86

	rcar_du_group_write(rgrp, DEFR8, defr8);
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp)
{
	struct rcar_du_device *rcdu = rgrp->dev;
	struct rcar_du_crtc *rcrtc;
	unsigned int num_crtcs = 0;
	unsigned int i;
	u32 didsr;

	/*
	 * Configure input dot clock routing with a hardcoded configuration. If
	 * the DU channel can use the LVDS encoder output clock as the dot
	 * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn.
	 *
	 * Each channel can then select between the dot clock configured here
	 * and the clock provided by the CPG through the ESCR register.
	 */
	if (rcdu->info->gen < 3 && rgrp->index == 0) {
		/*
		 * On Gen2 a single register in the first group controls dot
		 * clock selection for all channels.
		 */
		rcrtc = rcdu->crtcs;
		num_crtcs = rcdu->num_crtcs;
	} else if (rcdu->info->gen == 3 && rgrp->num_crtcs > 1) {
		/*
		 * On Gen3 dot clocks are setup through per-group registers,
		 * only available when the group has two channels.
		 */
		rcrtc = &rcdu->crtcs[rgrp->index * 2];
		num_crtcs = rgrp->num_crtcs;
	}

	if (!num_crtcs)
		return;

	didsr = DIDSR_CODE;
	for (i = 0; i < num_crtcs; ++i, ++rcrtc) {
		if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index))
			didsr |= DIDSR_LCDS_LVDS0(i)
			      |  DIDSR_PDCS_CLK(i, 0);
		else
			didsr |= DIDSR_LCDS_DCLKIN(i)
			      |  DIDSR_PDCS_CLK(i, 0);
	}

	rcar_du_group_write(rgrp, DIDSR, didsr);
}

135 136
static void rcar_du_group_setup(struct rcar_du_group *rgrp)
{
137 138
	struct rcar_du_device *rcdu = rgrp->dev;

139 140
	/* Enable extended features */
	rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE);
141 142 143 144 145
	if (rcdu->info->gen < 3) {
		rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G);
		rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3);
		rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE);
	}
146
	rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5);
147

148 149
	rcar_du_group_setup_pins(rgrp);

150
	if (rcar_du_has(rgrp->dev, RCAR_DU_FEATURE_EXT_CTRL_REGS)) {
151
		rcar_du_group_setup_defr8(rgrp);
152
		rcar_du_group_setup_didsr(rgrp);
153 154
	}

155 156 157
	if (rcdu->info->gen >= 3)
		rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10);

158 159
	/*
	 * Use DS1PR and DS2PR to configure planes priorities and connects the
160 161 162
	 * superposition 0 to DU0 pins. DU1 pins will be configured dynamically.
	 */
	rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS);
163 164 165 166 167 168

	/* Apply planes to CRTCs association. */
	mutex_lock(&rgrp->lock);
	rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) |
			    rgrp->dptsr_planes);
	mutex_unlock(&rgrp->lock);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
}

/*
 * rcar_du_group_get - Acquire a reference to the DU channels group
 *
 * Acquiring the first reference setups core registers. A reference must be held
 * before accessing any hardware registers.
 *
 * This function must be called with the DRM mode_config lock held.
 *
 * Return 0 in case of success or a negative error code otherwise.
 */
int rcar_du_group_get(struct rcar_du_group *rgrp)
{
	if (rgrp->use_count)
		goto done;

	rcar_du_group_setup(rgrp);

done:
	rgrp->use_count++;
	return 0;
}

/*
 * rcar_du_group_put - Release a reference to the DU
 *
 * This function must be called with the DRM mode_config lock held.
 */
void rcar_du_group_put(struct rcar_du_group *rgrp)
{
	--rgrp->use_count;
}

static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
{
	rcar_du_group_write(rgrp, DSYSR,
		(rcar_du_group_read(rgrp, DSYSR) & ~(DSYSR_DRES | DSYSR_DEN)) |
		(start ? DSYSR_DEN : DSYSR_DRES));
}

void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
{
212 213
	/*
	 * Many of the configuration bits are only updated when the display
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	 * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some
	 * of those bits could be pre-configured, but others (especially the
	 * bits related to plane assignment to display timing controllers) need
	 * to be modified at runtime.
	 *
	 * Restart the display controller if a start is requested. Sorry for the
	 * flicker. It should be possible to move most of the "DRES-update" bits
	 * setup to driver initialization time and minimize the number of cases
	 * when the display controller will have to be restarted.
	 */
	if (start) {
		if (rgrp->used_crtcs++ != 0)
			__rcar_du_group_start_stop(rgrp, false);
		__rcar_du_group_start_stop(rgrp, true);
	} else {
		if (--rgrp->used_crtcs == 0)
			__rcar_du_group_start_stop(rgrp, false);
	}
}

void rcar_du_group_restart(struct rcar_du_group *rgrp)
{
236 237
	rgrp->need_restart = false;

238 239 240
	__rcar_du_group_start_stop(rgrp, false);
	__rcar_du_group_start_stop(rgrp, true);
}
241

242
int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu)
243
{
244 245 246
	struct rcar_du_group *rgrp;
	struct rcar_du_crtc *crtc;
	unsigned int index;
247 248
	int ret;

249 250 251
	if (!rcar_du_has(rcdu, RCAR_DU_FEATURE_EXT_CTRL_REGS))
		return 0;

252 253
	/*
	 * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are
254 255 256 257
	 * configured in the DEFR8 register of the first group on Gen2 and the
	 * last group on Gen3. As this function can be called with the DU
	 * channels of the corresponding CRTCs disabled, we need to enable the
	 * group clock before accessing the register.
258
	 */
259 260 261 262 263
	index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1;
	rgrp = &rcdu->groups[index];
	crtc = &rcdu->crtcs[index * 2];

	ret = clk_prepare_enable(crtc->clock);
264 265 266
	if (ret < 0)
		return ret;

267
	rcar_du_group_setup_defr8(rgrp);
268

269
	clk_disable_unprepare(crtc->clock);
270 271 272 273 274

	return 0;
}

int rcar_du_group_set_routing(struct rcar_du_group *rgrp)
275 276 277 278 279 280
{
	struct rcar_du_crtc *crtc0 = &rgrp->dev->crtcs[rgrp->index * 2];
	u32 dorcr = rcar_du_group_read(rgrp, DORCR);

	dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK);

281 282
	/*
	 * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and
283 284
	 * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1
	 * by default.
285
	 */
286
	if (crtc0->outputs & BIT(RCAR_DU_OUTPUT_DPAD1))
287 288 289 290 291
		dorcr |= DORCR_PG2D_DS1;
	else
		dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2;

	rcar_du_group_write(rgrp, DORCR, dorcr);
292

293
	return rcar_du_set_dpad0_vsp1_routing(rgrp->dev);
294
}