Commit 926cd66f authored by Iason Paraskevopoulos's avatar Iason Paraskevopoulos
Browse files

Add support for multiplane swapchain images in Wayland



Updates wsialloc and wsi::wayland::swapchain to support multiplane
image allocations.

Uses the custom allocator for allocations in Wayland image creation.

Change-Id: I1950b14b75711a76521bbf1967c3c835d006f8a8
Signed-off-by: Iason Paraskevopoulos's avatarIason Paraskevopoulos <iason.paraskevopoulos@arm.com>
parent 8236f8aa
Pipeline #307108 passed with stage
in 1 minute and 23 seconds
......@@ -55,7 +55,8 @@ namespace layer
OPTIONAL(GetPhysicalDeviceSurfaceFormatsKHR) \
OPTIONAL(GetPhysicalDeviceSurfacePresentModesKHR) \
OPTIONAL(GetPhysicalDeviceSurfaceSupportKHR) \
OPTIONAL(GetPhysicalDeviceImageFormatProperties2KHR)
OPTIONAL(GetPhysicalDeviceImageFormatProperties2KHR) \
OPTIONAL(GetPhysicalDeviceFormatProperties2KHR)
struct instance_dispatch_table
{
......@@ -102,7 +103,8 @@ struct instance_dispatch_table
OPTIONAL(GetSwapchainImagesKHR) \
OPTIONAL(AcquireNextImageKHR) \
OPTIONAL(QueuePresentKHR) \
OPTIONAL(GetMemoryFdPropertiesKHR)
OPTIONAL(GetMemoryFdPropertiesKHR) \
OPTIONAL(BindImageMemory2KHR)
struct device_dispatch_table
{
......
......@@ -42,7 +42,8 @@
/** Default alignment */
#define WSIALLOCP_MIN_ALIGN_SZ (64u)
struct ion_allocator {
struct ion_allocator
{
/* File descriptor of /dev/ion. */
int fd;
/* Allocator heap id. */
......@@ -221,43 +222,44 @@ int wsialloc_alloc(
assert(new_fd != NULL);
assert(offset != NULL);
int ret = 0;
struct ion_allocator *ion = allocator->ptr;
if(modifier != NULL && *modifier != 0)
if (modifier != NULL && *modifier != 0)
{
return -ENOTSUP;
}
size_t size = 0;
/* Validate format and determine per-plane bits per pixel. */
uint32_t nr_planes, bits_per_pixel[WSIALLOCP_MAX_PLANES];
ret = wsiallocp_get_fmt_info(fourcc, &nr_planes, bits_per_pixel);
int ret = wsiallocp_get_fmt_info(fourcc, &nr_planes, bits_per_pixel);
if (ret != 0)
{
return ret;
}
/* Only single plane formats supported. */
if (nr_planes != 1)
size_t size = 0;
for (uint32_t plane = 0; plane < nr_planes; plane++)
{
return -ENOTSUP;
}
offset[plane] = size;
/* Assumes multiple of 8--rework otherwise. */
uint32_t plane0_bytes_per_pixel = bits_per_pixel[0] / 8;
assert(plane0_bytes_per_pixel * 8 == bits_per_pixel[0]);
/* Assumes multiple of 8--rework otherwise. */
const uint32_t plane_bytes_per_pixel = bits_per_pixel[plane] / 8;
assert(plane_bytes_per_pixel * 8 == bits_per_pixel[plane]);
*stride = round_size_up_to_align(width * plane0_bytes_per_pixel);
size = *stride * height;
stride[plane] = round_size_up_to_align(width * plane_bytes_per_pixel);
size += stride[plane] * height;
}
*new_fd = allocate(ion->fd, size, ion->alloc_heap_id);
if (*new_fd < 0)
new_fd[0] = allocate(ion->fd, size, ion->alloc_heap_id);
if (new_fd[0] < 0)
{
return -errno;
}
*offset = 0;
for (uint32_t plane = 1; plane < nr_planes; plane++)
{
new_fd[plane] = new_fd[0];
}
return 0;
}
/*
* Copyright (c) 2017-2020 Arm Limited.
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
......@@ -57,7 +57,7 @@ swapchain::~swapchain()
teardown();
}
VkResult swapchain::create_image(const VkImageCreateInfo &image_create, wsi::swapchain_image &image)
VkResult swapchain::create_image(VkImageCreateInfo image_create, wsi::swapchain_image &image)
{
VkResult res = VK_SUCCESS;
res = m_device_data.disp.CreateImage(m_device, &image_create, nullptr, &image.image);
......
/*
* Copyright (c) 2017-2019 Arm Limited.
* Copyright (c) 2017-2019, 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
......@@ -72,7 +72,7 @@ protected:
* will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED
* depending on the error that occured.
*/
VkResult create_image(const VkImageCreateInfo &image_create_info, wsi::swapchain_image &image);
VkResult create_image(VkImageCreateInfo image_create_info, wsi::swapchain_image &image);
/**
* @brief Method to perform a present - just calls unpresent_image on headless
......@@ -87,7 +87,7 @@ protected:
*
* @param image Handle to the image about to be released.
*/
void destroy_image(wsi::swapchain_image &image);
void destroy_image(wsi::swapchain_image &image);
};
} /* namespace headless */
......
/*
* Copyright (c) 2017-2020 Arm Limited.
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
......@@ -306,7 +306,7 @@ protected:
* will return VK_ERROR_OUT_OF_DEVICE_MEMORY or VK_ERROR_INITIALIZATION_FAILED
* depending on the error that occured.
*/
virtual VkResult create_image(const VkImageCreateInfo &image_create_info, swapchain_image &image) = 0;
virtual VkResult create_image(VkImageCreateInfo image_create_info, swapchain_image &image) = 0;
/**
* @brief Method to present and image
......@@ -364,7 +364,7 @@ private:
/**
* @brief Per swapchain thread function that handles page flipping.
*
*
* This thread should be running for the lifetime of the swapchain.
* The thread simply calls the implementation's present_image() method.
* There are 3 main cases we cover here:
......
......@@ -27,6 +27,7 @@
#include "swapchain.hpp"
#include "wl_helpers.hpp"
#include <stdint.h>
#include <cstring>
#include <cassert>
#include <unistd.h>
......@@ -34,9 +35,12 @@
#include <cerrno>
#include <cstdio>
#include <climits>
#include <functional>
#include "util/drm/drm_utils.hpp"
#define MAX_PLANES 4
namespace wsi
{
namespace wayland
......@@ -60,14 +64,23 @@ make_proxy_with_queue(T *object, wl_event_queue *queue)
return std::unique_ptr<T, std::function<void(T *)>>(proxy, delete_proxy);
}
const VkImageAspectFlagBits plane_flag_bits[MAX_PLANES] = {
VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT,
VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT,
VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT,
VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT,
};
struct swapchain::wayland_image_data
{
int buffer_fd;
int stride;
uint32_t offset;
int buffer_fd[MAX_PLANES];
int stride[MAX_PLANES];
uint32_t offset[MAX_PLANES];
wl_buffer *buffer;
VkDeviceMemory memory;
VkDeviceMemory memory[MAX_PLANES];
uint32_t num_planes;
};
swapchain::swapchain(layer::device_private_data &dev_data, const VkAllocationCallbacks *pAllocator)
......@@ -136,7 +149,7 @@ VkResult swapchain::init_platform(VkDevice device, const VkSwapchainCreateInfoKH
return VK_ERROR_INITIALIZATION_FAILED;
}
auto registry = registry_owner{wl_display_get_registry(display_proxy.get())};
auto registry = registry_owner{ wl_display_get_registry(display_proxy.get()) };
if (registry == nullptr)
{
WSI_PRINT_ERROR("Failed to get wl display registry.\n");
......@@ -173,17 +186,18 @@ VkResult swapchain::init_platform(VkDevice device, const VkSwapchainCreateInfoKH
return VK_SUCCESS;
}
static void create_succeeded(void *data, struct zwp_linux_buffer_params_v1 *params, struct wl_buffer *buffer)
extern "C" void create_succeeded(void *data, struct zwp_linux_buffer_params_v1 *params,
struct wl_buffer *buffer)
{
struct wl_buffer **wayland_buffer = (struct wl_buffer **)data;
auto wayland_buffer = reinterpret_cast<wl_buffer **>(data);
*wayland_buffer = buffer;
}
static const struct zwp_linux_buffer_params_v1_listener params_listener = { create_succeeded, NULL };
static void buffer_release(void *data, struct wl_buffer *wayl_buffer)
extern "C" void buffer_release(void *data, struct wl_buffer *wayl_buffer)
{
swapchain *sc = (swapchain *)data;
auto sc = reinterpret_cast<swapchain *>(data);
sc->release_buffer(wayl_buffer);
}
......@@ -192,8 +206,7 @@ void swapchain::release_buffer(struct wl_buffer *wayl_buffer)
uint32_t i;
for (i = 0; i < m_swapchain_images.size(); i++)
{
wayland_image_data *data;
data = (wayland_image_data *)m_swapchain_images[i].data;
auto data = reinterpret_cast<wayland_image_data *>(m_swapchain_images[i].data);
if (data->buffer == wayl_buffer)
{
unpresent_image(i);
......@@ -207,14 +220,145 @@ void swapchain::release_buffer(struct wl_buffer *wayl_buffer)
static struct wl_buffer_listener buffer_listener = { buffer_release };
VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, wayland_image_data *image_data,
VkResult swapchain::allocate_plane_memory(int fd, VkDeviceMemory *memory)
{
uint32_t mem_index = -1;
VkResult result = get_fd_mem_type_index(fd, mem_index);
if (result != VK_SUCCESS)
{
return result;
}
const off_t dma_buf_size = lseek(fd, 0, SEEK_END);
if (dma_buf_size < 0)
{
WSI_PRINT_ERROR("Failed to get DMA Buf size.\n");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
VkImportMemoryFdInfoKHR import_mem_info = {};
import_mem_info.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR;
import_mem_info.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
import_mem_info.fd = fd;
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.pNext = &import_mem_info;
alloc_info.allocationSize = static_cast<uint64_t>(dma_buf_size);
alloc_info.memoryTypeIndex = mem_index;
result = m_device_data.disp.AllocateMemory(
m_device, &alloc_info, get_allocation_callbacks(), memory);
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Failed to import memory.\n");
return result;
}
return VK_SUCCESS;
}
VkResult swapchain::get_fd_mem_type_index(int fd, uint32_t &mem_idx)
{
VkMemoryFdPropertiesKHR mem_props = {};
mem_props.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR;
VkResult result = m_device_data.disp.GetMemoryFdPropertiesKHR(
m_device, VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, fd, &mem_props);
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Error querying Fd properties.\n");
return result;
}
for (mem_idx = 0; mem_idx < VK_MAX_MEMORY_TYPES; mem_idx++)
{
if (mem_props.memoryTypeBits & (1 << mem_idx))
{
break;
}
}
assert(mem_idx < VK_MAX_MEMORY_TYPES);
return VK_SUCCESS;
}
VkResult swapchain::get_drm_format_properties(
VkFormat format, util::vector<VkDrmFormatModifierPropertiesEXT> &format_props_list)
{
VkDrmFormatModifierPropertiesListEXT format_modifier_props = {};
format_modifier_props.sType = VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_EXT;
VkFormatProperties2KHR format_props = {};
format_props.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR;
format_props.pNext = &format_modifier_props;
m_device_data.instance_data.disp.GetPhysicalDeviceFormatProperties2KHR(
m_device_data.physical_device, format, &format_props);
if (!format_props_list.try_resize(format_modifier_props.drmFormatModifierCount))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
format_modifier_props.pDrmFormatModifierProperties = format_props_list.data();
m_device_data.instance_data.disp.GetPhysicalDeviceFormatProperties2KHR(
m_device_data.physical_device, format, &format_props);
return VK_SUCCESS;
}
static bool is_disjoint_supported(
const util::vector<VkDrmFormatModifierPropertiesEXT> &format_props, uint64_t modifier)
{
for (const auto &prop : format_props)
{
if (prop.drmFormatModifier == modifier &&
prop.drmFormatModifierTilingFeatures & VK_FORMAT_FEATURE_DISJOINT_BIT)
{
return true;
}
}
return false;
}
static uint32_t get_same_fd_index(int fd, int const *fds)
{
uint32_t index = 0;
while (fd != fds[index])
{
index++;
}
return index;
}
VkResult swapchain::allocate_image(VkImageCreateInfo &image_create_info, wayland_image_data *image_data,
VkImage *image)
{
VkResult result = VK_SUCCESS;
const uint64_t modifier = DRM_FORMAT_MOD_LINEAR;
image_data->buffer = nullptr;
image_data->buffer_fd = -1;
image_data->memory = VK_NULL_HANDLE;
image_data->num_planes = 0;
for (uint32_t plane = 0; plane < MAX_PLANES; plane++)
{
image_data->buffer_fd[plane] = -1;
image_data->memory[plane] = VK_NULL_HANDLE;
}
/* Query support for disjoint images. */
util::vector<VkDrmFormatModifierPropertiesEXT> drm_format_props(m_allocator);
result = get_drm_format_properties(image_create_info.format, drm_format_props);
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Failed to get format properties.\n");
return result;
}
auto is_disjoint = is_disjoint_supported(drm_format_props, modifier);
VkExternalImageFormatPropertiesKHR external_props = {};
external_props.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR;
......@@ -230,7 +374,7 @@ VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, w
VkPhysicalDeviceImageDrmFormatModifierInfoEXT drm_mod_info = {};
drm_mod_info.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT;
drm_mod_info.pNext = &external_info;
drm_mod_info.drmFormatModifier = DRM_FORMAT_MOD_LINEAR;
drm_mod_info.drmFormatModifier = modifier;
drm_mod_info.sharingMode = image_create_info.sharingMode;
drm_mod_info.queueFamilyIndexCount = image_create_info.queueFamilyIndexCount;
drm_mod_info.pQueueFamilyIndices = image_create_info.pQueueFamilyIndices;
......@@ -284,27 +428,51 @@ VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, w
else
{
/* TODO: Handle Dedicated allocation bit. */
uint32_t fourcc = util::drm::vk_to_drm_format(image_create_info.format);
const auto fourcc = util::drm::vk_to_drm_format(image_create_info.format);
int res =
const auto res =
wsialloc_alloc(&m_wsi_allocator, fourcc, image_create_info.extent.width, image_create_info.extent.height,
&image_data->stride, &image_data->buffer_fd, &image_data->offset, nullptr);
image_data->stride, image_data->buffer_fd, image_data->offset, nullptr);
if (res != 0)
{
WSI_PRINT_ERROR("Failed allocation of DMA Buffer.\n");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t plane = 0; plane < MAX_PLANES; plane++)
{
assert(image_data->stride >= 0);
VkSubresourceLayout image_layout = {};
image_layout.offset = image_data->offset;
image_layout.rowPitch = static_cast<uint32_t>(image_data->stride);
if (image_data->buffer_fd[plane] == -1)
{
break;
}
image_data->num_planes++;
}
{
util::vector<VkSubresourceLayout> image_layout(m_allocator);
if (!image_layout.try_resize(image_data->num_planes))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t plane = 0; plane < image_data->num_planes; plane++)
{
assert(image_data->stride[plane] >= 0);
image_layout[plane].offset = image_data->offset[plane];
image_layout[plane].rowPitch = static_cast<uint32_t>(image_data->stride[plane]);
}
if (is_disjoint)
{
image_create_info.flags |= VK_IMAGE_CREATE_DISJOINT_BIT;
}
VkImageDrmFormatModifierExplicitCreateInfoEXT drm_mod_info = {};
drm_mod_info.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT;
drm_mod_info.pNext = image_create_info.pNext;
drm_mod_info.drmFormatModifier = DRM_FORMAT_MOD_LINEAR;
drm_mod_info.drmFormatModifierPlaneCount = 1;
drm_mod_info.pPlaneLayouts = &image_layout;
drm_mod_info.drmFormatModifierPlaneCount = image_data->num_planes;
drm_mod_info.pPlaneLayouts = image_layout.data();
VkExternalMemoryImageCreateInfoKHR external_info = {};
external_info.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR;
......@@ -322,88 +490,87 @@ VkResult swapchain::allocate_image(const VkImageCreateInfo &image_create_info, w
return result;
}
{
VkMemoryFdPropertiesKHR mem_props = {};
mem_props.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR;
result = m_device_data.disp.GetMemoryFdPropertiesKHR(m_device, VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
image_data->buffer_fd, &mem_props);
if (result != VK_SUCCESS)
if (is_disjoint)
{
WSI_PRINT_ERROR("Error querying Fd properties.\n");
return result;
}
util::vector<VkBindImageMemoryInfo> bind_img_mem_infos(m_allocator);
if (!bind_img_mem_infos.try_resize(image_data->num_planes))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
uint32_t mem_idx;
for (mem_idx = 0; mem_idx < VK_MAX_MEMORY_TYPES; mem_idx++)
{
if (mem_props.memoryTypeBits & (1 << mem_idx))
util::vector<VkBindImagePlaneMemoryInfo> bind_plane_mem_infos(m_allocator);
if (!bind_plane_mem_infos.try_resize(image_data->num_planes))
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t plane = 0; plane < image_data->num_planes; plane++)
{
break;
const auto fd_index = get_same_fd_index(image_data->buffer_fd[plane], image_data->buffer_fd);
if (fd_index == plane)
{
result = allocate_plane_memory(image_data->buffer_fd[plane], &image_data->memory[fd_index]);
if (result != VK_SUCCESS)
{
return result;
}
}
bind_plane_mem_infos[plane].planeAspect = plane_flag_bits[plane];
bind_plane_mem_infos[plane].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO;
bind_plane_mem_infos[plane].pNext = NULL;
bind_img_mem_infos[plane].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_img_mem_infos[plane].pNext = &bind_plane_mem_infos[plane];
bind_img_mem_infos[plane].image = *image;
bind_img_mem_infos[plane].memory = image_data->memory[fd_index];
}
result = m_device_data.disp.BindImageMemory2KHR(m_device, bind_img_mem_infos.size(),
bind_img_mem_infos.data());
}
off_t dma_buf_size = lseek(image_data->buffer_fd, 0, SEEK_END);
if (dma_buf_size < 0)
else
{
WSI_PRINT_ERROR("Failed to get DMA Buf size.\n");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
VkImportMemoryFdInfoKHR import_mem_info = {};
import_mem_info.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR;
import_mem_info.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
import_mem_info.fd = image_data->buffer_fd;
/* Make sure one fd has been allocated. */
for (uint32_t plane = 1; plane < image_data->num_planes; plane++)
{
if (image_data->buffer_fd[plane] != image_data->buffer_fd[0])
{
WSI_PRINT_ERROR("Different fds per plane for a non disjoint image.\n");
return VK_ERROR_INITIALIZATION_FAILED;
}
}
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.pNext = &import_mem_info;
alloc_info.allocationSize = static_cast<uint64_t>(dma_buf_size);
alloc_info.memoryTypeIndex = mem_idx;
result = allocate_plane_memory(image_data->buffer_fd[0], &image_data->memory[0]);
if (result != VK_SUCCESS)
{
return result;
}
result = m_device_data.disp.AllocateMemory(m_device, &alloc_info, get_allocation_callbacks(), &image_data->memory);
}
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Failed to import memory.\n");
return result;
result = m_device_data.disp.BindImageMemory(m_device, *image, image_data->memory[0], 0);
}
}
result = m_device_data.disp.BindImageMemory(m_device, *image, image_data->memory, 0);
}
return result;
}
VkResult swapchain::create_image(const VkImageCreateInfo &image_create_info, swapchain_image &image)
VkResult swapchain::create_image(VkImageCreateInfo image_create_info, swapchain_image &image)
{
uint32_t fourcc = util::drm::vk_to_drm_format(image_create_info.format);
int res;
VkResult result = VK_SUCCESS;
wayland_image_data *image_data = nullptr;
VkFenceCreateInfo fenceInfo = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, 0 };
/* Create image_data */
if (get_allocation_callbacks() != nullptr)
{
image_data = static_cast<wayland_image_data *>(
get_allocation_callbacks()->pfnAllocation(get_allocation_callbacks()->pUserData, sizeof(wayland_image_data),
alignof(wayland_image_data), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT));
}
else
{
image_data = static_cast<wayland_image_data *>(malloc(sizeof(wayland_image_data)));
}
auto image_data = m_allocator.create<wayland_image_data>(1);
if (image_data == nullptr)
{
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
image.data = reinterpret_cast<void *>(image_data);
image.data = image_data;
image.status = swapchain_image::FREE;
result = allocate_image(image_create_info, image_data, &image.image);
VkResult result = allocate_image(image_create_info, image_data, &image.image);
if (result != VK_SUCCESS)
{
WSI_PRINT_ERROR("Failed to allocate image.\n");
destroy_image(image);
return result;
}
......@@ -417,15 +584,22 @@ VkResult swapchain::create_image(const VkImageCreateInfo &image_create_info, swa
}
zwp_linux_buffer_params_v1 *params = zwp_linux_dmabuf_v1_create_params(dmabuf_interface_proxy.get());
zwp_linux_buff