Commit 10e934e2 authored by Bastien Nocera's avatar Bastien Nocera

lib: Add fpi_ssm API documentation

parent 48b9e6c5
......@@ -24,7 +24,7 @@
</part>
<part>
<title>API Documentation</title>
<title>Library API Documentation</title>
<xi:include href="xml/events.xml"/>
<xi:include href="xml/discovery.xml"/>
......@@ -36,11 +36,10 @@
<xi:include href="xml/img.xml"/>
</part>
<!--
<part>
<title>Writing Drivers</title>
<xi:include href="xml/fpi-ssm.xml"/>
</part>
-->
<index id="api-index">
<title>API Index</title>
......
......@@ -140,3 +140,25 @@ fp_img_get_minutiae
<INCLUDE>fprint.h</INCLUDE>
<FILE>poll</FILE>
</SECTION>
<SECTION>
<INCLUDE>fpi-ssm.h</INCLUDE>
<FILE>fpi-ssm</FILE>
fpi_ssm
ssm_completed_fn
ssm_handler_fn
fpi_ssm_new
fpi_ssm_free
fpi_ssm_start
fpi_ssm_start_subsm
fpi_ssm_next_state
fpi_ssm_jump_to_state
fpi_ssm_mark_completed
fpi_ssm_mark_aborted
fpi_ssm_set_user_data
fpi_ssm_get_user_data
fpi_ssm_get_error
fpi_ssm_get_cur_state
</SECTION>
......@@ -25,27 +25,31 @@
#include <config.h>
#include <errno.h>
/* SSM: sequential state machine
/**
* SECTION:fpi-ssm
* @title: Sequential state machine
*
* Asynchronous driver design encourages some kind of state machine behind it.
* In most cases, the state machine is entirely linear - you only go to the
* next state, you never jump or go backwards. The SSM functions help you
* next state, you never jump or go backwards. The #fpi_ssm functions help you
* implement such a machine.
*
* e.g. S1 --> S2 --> S3 --> S4
* S1 is the start state
* e.g. `S1` ↦ `S2` ↦ `S3` ↦ `S4`
*
* `S1` is the start state
* There is also an implicit error state and an implicit accepting state
* (both with implicit edges from every state).
*
* You can also jump to any arbitrary state (while marking completion of the
* current state) while the machine is running. In other words there are
* implicit edges linking one state to every other state. OK, we're stretching
* the "state machine" description at this point.
* implicit edges linking one state to every other state.
*
* To create a ssm, you pass a state handler function and the total number of
* states (4 in the above example).
* To create an #fpi_ssm, you pass a state handler function and the total number of
* states (4 in the above example) to fpi_ssm_new(). Note that the state numbers
* start at zero, making them match the first value in a C enumeration.
*
* To start a ssm, you pass in a completion callback function which gets
* called when the ssm completes (both on error and on failure).
* To start a ssm, you pass in a completion callback function to fpi_ssm_start()
* which gets called when the ssm completes (both on error and on failure).
*
* To iterate to the next state, call fpi_ssm_next_state(). It is legal to
* attempt to iterate beyond the final state - this is equivalent to marking
......@@ -57,21 +61,20 @@
* To mark failed completion of a SSM, call fpi_ssm_mark_aborted() from any
* state. You must pass a non-zero error code.
*
* Your state handling function looks at ssm->cur_state in order to determine
* the current state and hence which operations to perform (a switch statement
* is appropriate).
* Typically, the state handling function fires off an asynchronous libusb
* transfer, and the callback function iterates the machine to the next state
* upon success (or aborts the machine on transfer failure).
* Your state handling function looks at the return value of
* fpi_ssm_get_cur_state() in order to determine the current state and hence
* which operations to perform (a switch statement is appropriate).
*
* Typically, the state handling function fires off an asynchronous
* communication with the device (such as a libsub transfer), and the
* callback function iterates the machine to the next state
* upon success (or aborts the machine on failure).
*
* Your completion callback should examine ssm->error in order to determine
* whether the ssm completed or failed. An error code of zero indicates
* successful completion.
* Your completion callback should examine the return value of
* fpi_ssm_get_error() in order to determine whether the #fpi_ssm completed or
* failed. An error code of zero indicates successful completion.
*/
/* sequential state machine: state machine that iterates sequentially over
* a predefined series of states. can be aborted by either completion or
* abortion error conditions. */
struct fpi_ssm {
struct fp_dev *dev;
fpi_ssm *parentsm;
......@@ -84,7 +87,17 @@ struct fpi_ssm {
ssm_handler_fn handler;
};
/* Allocate a new ssm */
/**
* fpi_ssm_new:
* @dev: a #fp_dev fingerprint device
* @handler: the callback function
* @nr_states: the number of states
*
* Allocate a new ssm, with @nr_states states. The @handler callback
* will be called after each state transition.
*
* Returns: a new #fpi_ssm state machine
*/
fpi_ssm *fpi_ssm_new(struct fp_dev *dev, ssm_handler_fn handler,
int nr_states)
{
......@@ -99,12 +112,29 @@ fpi_ssm *fpi_ssm_new(struct fp_dev *dev, ssm_handler_fn handler,
return machine;
}
/**
* fpi_ssm_get_dev:
* @machine: an #fpi_ssm state machine
*
* Returns the #fp_dev attached to the #fpi_ssm as passed
* in fpi_ssm_new().
*
* Returns: a struct #fp_dev
*/
struct fp_dev *
fpi_ssm_get_dev(fpi_ssm *machine)
{
return machine->dev;
}
/**
* fpi_ssm_set_user_data:
* @machine: an #fpi_ssm state machine
* @user_data: a pointer to user data
*
* Set a user data pointer in the #fpi_ssm structure, to be
* retrieved with fpi_ssm_get_user_data() at a later point.
*/
void
fpi_ssm_set_user_data(fpi_ssm *machine,
void *user_data)
......@@ -112,13 +142,28 @@ fpi_ssm_set_user_data(fpi_ssm *machine,
machine->priv = user_data;
}
/**
* fpi_ssm_get_user_data:
* @machine: an #fpi_ssm state machine
*
* Retrieve the pointer to user data set with
* fpi_ssm_set_user_data().
*
* Returns: a pointer
*/
void *
fpi_ssm_get_user_data(fpi_ssm *machine)
{
return machine->priv;
}
/* Free a ssm */
/**
* fpi_ssm_free:
* @machine: an #fpi_ssm state machine
*
* Frees a state machine. This does not call any error or success
* callbacks, so you need to do this yourself.
*/
void fpi_ssm_free(fpi_ssm *machine)
{
if (!machine)
......@@ -133,7 +178,15 @@ static void __ssm_call_handler(fpi_ssm *machine)
machine->handler(machine);
}
/* Start a ssm. You can also restart a completed or aborted ssm. */
/**
* fpi_ssm_start:
* @ssm: an #fpi_ssm state machine
* @callback: the #ssm_completed_fn callback to call on completion
*
* Starts a state machine. You can also use this function to restart
* a completed or aborted state machine. The @callback will be called
* on completion.
*/
void fpi_ssm_start(fpi_ssm *ssm, ssm_completed_fn callback)
{
BUG_ON(!ssm->completed);
......@@ -155,17 +208,30 @@ static void __subsm_complete(fpi_ssm *ssm)
fpi_ssm_free(ssm);
}
/* start a SSM as a child of another. if the child completes successfully, the
* parent will be advanced to the next state. if the child aborts, the parent
* will be aborted with the same error code. the child will be automatically
* freed upon completion/abortion. */
/**
* fpi_ssm_start_subsm:
* @parent: an #fpi_ssm state machine
* @child: an #fpi_ssm state machine
*
* Starts a state machine as a child of another. if the child completes
* successfully, the parent will be advanced to the next state. if the
* child aborts, the parent will be aborted with the same error code.
*
* The child will be automatically freed upon completion or abortion.
*/
void fpi_ssm_start_subsm(fpi_ssm *parent, fpi_ssm *child)
{
child->parentsm = parent;
fpi_ssm_start(child, __subsm_complete);
}
/* Mark a ssm as completed successfully. */
/**
* fpi_ssm_mark_completed:
* @machine: an #fpi_ssm state machine
*
* Mark a ssm as completed successfully. The callback set when creating
* the state machine with fpi_ssm_new() will be called synchronously.
*/
void fpi_ssm_mark_completed(fpi_ssm *machine)
{
BUG_ON(machine->completed);
......@@ -175,7 +241,13 @@ void fpi_ssm_mark_completed(fpi_ssm *machine)
machine->callback(machine);
}
/* Mark a ssm as aborted with error. */
/**
* fpi_ssm_mark_aborted:
* @machine: an #fpi_ssm state machine
* @error: the error code
*
* Mark a state machine as aborted with error.
*/
void fpi_ssm_mark_aborted(fpi_ssm *machine, int error)
{
fp_dbg("error %d from state %d", error, machine->cur_state);
......@@ -184,7 +256,14 @@ void fpi_ssm_mark_aborted(fpi_ssm *machine, int error)
fpi_ssm_mark_completed(machine);
}
/* Iterate to next state of a ssm */
/**
* fpi_ssm_next_state:
* @machine: an #fpi_ssm state machine
*
* Iterate to next state of a state machine. If the current state is the
* last state, then the state machine will be marked as completed, as
* if calling fpi_ssm_mark_completed().
*/
void fpi_ssm_next_state(fpi_ssm *machine)
{
BUG_ON(machine->completed);
......@@ -196,6 +275,12 @@ void fpi_ssm_next_state(fpi_ssm *machine)
}
}
/**
* fpi_ssm_jump_to_state:
* @machine: an #fpi_ssm state machine
* @state: the state to jump to
*
*/
void fpi_ssm_jump_to_state(fpi_ssm *machine, int state)
{
BUG_ON(machine->completed);
......@@ -204,11 +289,28 @@ void fpi_ssm_jump_to_state(fpi_ssm *machine, int state)
__ssm_call_handler(machine);
}
/**
* fpi_ssm_get_cur_state:
* @machine: an #fpi_ssm state machine
*
* Returns the value of the current state. Note that states are
* 0-indexed, so a value of 0 means “the first state”.
*
* Returns: the current state.
*/
int fpi_ssm_get_cur_state(fpi_ssm *machine)
{
return machine->cur_state;
}
/**
* fpi_ssm_get_error:
* @machine: an #fpi_ssm state machine
*
* Returns the error code set by fpi_ssm_mark_aborted().
*
* Returns: a error code
*/
int fpi_ssm_get_error(fpi_ssm *machine)
{
return machine->error;
......
......@@ -30,19 +30,38 @@
/* async drv <--> lib comms */
/**
* fpi_ssm:
*
* Sequential state machine that iterates sequentially over
* a predefined series of states. Can be aborted by either completion or
* abortion error conditions.
*/
typedef struct fpi_ssm fpi_ssm;
/**
* ssm_completed_fn:
* @ssm: a #fpi_ssm state machine
*
* The callback called when a state machine completes successfully,
* as set when calling fpi_ssm_start().
*/
typedef void (*ssm_completed_fn)(fpi_ssm *ssm);
typedef void (*ssm_handler_fn)(fpi_ssm *ssm);
/* sequential state machine: state machine that iterates sequentially over
* a predefined series of states. can be aborted by either completion or
* abortion error conditions. */
/**
* ssm_handler_fn:
* @ssm: a #fpi_ssm state machine
*
* The callback called when a state machine transitions from one
* state to the next, as set when calling fpi_ssm_new().
*/
typedef void (*ssm_handler_fn)(fpi_ssm *ssm);
/* for library and drivers */
fpi_ssm *fpi_ssm_new(struct fp_dev *dev, ssm_handler_fn handler,
int nr_states);
void fpi_ssm_free(fpi_ssm *machine);
void fpi_ssm_start(fpi_ssm *machine, ssm_completed_fn callback);
void fpi_ssm_start(fpi_ssm *ssm, ssm_completed_fn callback);
void fpi_ssm_start_subsm(fpi_ssm *parent, fpi_ssm *child);
/* for drivers */
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment