Commit 4c5a2b3a authored by Dan Nicholson's avatar Dan Nicholson

autoconf: Documentation for using the autoconf'd build

Most of the options available from configure are documented on the
autoconf.html. This page is reached as an alternative provided on the
install.html page. An FAQ about why there is no configure script has
been removed.
parent f1166349
<title>Compilation and Installation using Autoconf</title>
<link rel="stylesheet" type="text/css" href="mesa.css"></head>
<h1>Compilation and Installation using Autoconf</h1>
<li><a href="#basic">Basic Usage</a></li>
<li><a href="#driver">Driver Options</a></li>
<li><a href="#xlib">Xlib Driver Options</a></li>
<li><a href="#dri">DRI Driver Options</a></li>
<li><a href="#osmesa">OSMesa Driver Options</a></li>
<li><a href="#library">Library Options</a></li>
<li><a href="#glu">GLU</a></li>
<li><a href="#glw">GLw</a></li>
<li><a href="#glut">GLUT</a></li>
<li><a href="#demos">Demo Program Options</a></li>
<a name="basic">
<h2>1. Basic Usage</h2>
The autoconf generated configure script can be used to guess your
platform and change various options for building Mesa. To use the
configure script, type:
To see a short description of all the options, type <code>./configure
--help</code>. If you are using a development snapshot and the configure
script does not exist, type <code>make configure</code> to generate it
first. Once you have run <code>./configure</code> and set the options to
your preference, type:
This will produce and several other libraries depending on the
options you have chosen. Later, if you want to rebuild for a different
configuration run <code>make realclean</code> before rebuilding.
Some of the generic autoconf options are used with Mesa:
<li><code>--prefix=PREFIX</code> - This is the root directory where
files will be installed by <code>make install</code>. The default is
<li><code>--exec-prefix=EPREFIX</code> - This is the root directory
where architecture-dependent files will be installed. In Mesa, this is
only used to derive the directory for the libraries. The default is
<li><code>--libdir=LIBDIR</code> - This option specifies the directory
where the GL libraries will be installed. The default is
<code>${exec_prefix}/lib</code>. It also serves as the name of the
library staging area in the source tree. For instance, if the option
<code>--libdir=/usr/local/lib64</code> is used, the libraries will be
created in a <code>lib64</code> directory at the top of the Mesa source
<li><code>--enable-static, --disable-shared</code> - By default, Mesa
will build shared libraries. Either of these options will force static
libraries to be built. It is not currently possible to build static and
shared libraries in a single pass.
<li><code>CC, CFLAGS, CXX, CXXFLAGS</code> - These environment variables
control the C and C++ compilers used during the build. By default,
<code>gcc</code> and <code>g++</code> are used with the options
<code>"-g -O2"</code>.
<li><code>LDFLAGS</code> - An environment variable specifying flags to
pass when linking programs. These are normally empty, but can be used
to direct the linker to use libraries in nonstandard directories. For
example, <code>LDFLAGS="-L/usr/X11R6/lib"</code>.
<li><code>PKG_CONFIG_PATH</code> - When available, the
<code>pkg-config</code> utility is used to search for external libraries
on the system. This environment variable is used to control the search
path for <code>pkg-config</code>. For instance, setting
<code>PKG_CONFIG_PATH=/usr/X11R6/lib/pkgconfig</code> will search for
package metadata in <code>/usr/X11R6</code> before the standard
There are also a few general options for altering the Mesa build:
<li><code>--with-x</code> - When the X11 development libraries are
needed, the <code>pkg-config</code> utility <a href="#pkg-config">will
be used</a> for locating them. If they cannot be found through
<code>pkg-config</code> a fallback routing using <code>imake</code> will
be used. In this case, the <code>--with-x</code>,
<code>--x-includes</code> and <code>--x-libraries</code> options can
control the use of X for Mesa.
<li><code>--enable-debug</code> - This option will enable compiler
options and macros to aid in debugging the Mesa libraries.
<li><code>--disable-asm</code> - There are assembly routines
available for a few architectures. These will be used by default if
one of these architectures is detected. This option ensures that
assembly will not be used.
<a name="driver">
<h2>2. Driver Options</h2>
There are several different driver modes that Mesa can use. These are
described in more detail in the <a href="install.html">basic
installation instructions</a>. The Mesa driver is controlled through the
configure option --with-driver. There are currently three supported
options in the configure script.
<a name="xlib">
<li><b><em>Xlib</em></b> - This is the default mode for building Mesa.
It uses Xlib as a software renderer to do all rendering. It corresponds
to the option <code>--with-driver=xlib</code>. The libX11 and libXext
libraries, as well as the X11 development headers, will be need to
support the Xlib driver.
<!-- Xlib specific options -->
<li><code>--disable-xlib-osmesa</code> - By default, the OSMesa library
will be built and linked to the Xlib enabled libGL. This option disables
building of libOSMesa.
<a name="dri">
<li><b><em>DRI</em></b> - This mode uses the DRI hardware drivers for
accelerated OpenGL rendering. Enable the DRI drivers with the option
<code>--with-driver=dri</code>. See the <a href="install.html">basic
installation instructions</a> for details on prerequisites for the DRI
<!-- DRI specific options -->
<li><code>--with-dri-driverdir=DIR</code> - This option specifies the
location the DRI drivers will be installed to and the location libGL
will search for DRI drivers. The default is
<li><code>--with-dri-drivers=DRIVER,DRIVER,...</code> - This option
allows a specific set of DRI drivers to be built. For example,
<code>--with-dri-drivers="i965,radeon,nouveau"</code>. By default,
the drivers will be chosen depending on the target platform. See the
directory <code>src/mesa/drivers/dri</code> in the source tree for
available drivers.
<!-- This explanation might be totally bogus. Kristian? -->
<li><code>--disable-driglx-direct</code> - Disable direct rendering in
GLX. Normally, direct hardware rendering through the DRI drivers and
indirect software rendering are enabled in GLX. This option disables
direct rendering entirely. It can be useful on architectures where
kernel DRM modules are not available.
<li><code>--enable-glx-tls</code> - Enable Thread Local Storage (TLS) in
<li><code>--with-expat=DIR</code> - The DRI-enabled libGL uses expat to
parse the DRI configuration files in <code>/etc/drirc</code> and
<code>~/.drirc</code>. This option allows a specific expat installation
to be used. For example, <code>--with-expat=/usr/local</code> will
search for expat headers and libraries in <code>/usr/local/include</code>
and <code>/usr/local/lib</code>, respectively.
<a name="osmesa">
<li><b><em>OSMesa</em></b> - No libGL is built in this
mode. Instead, the driver code is built into the Off-Screen Mesa
(OSMesa) library. See the <a href="osmesa.html">Off-Screen Rendering</a>
page for more details.
<!-- OSMesa specific options -->
<li><code>--with-osmesa-bits=BITS</code> - This option allows the size
of the color channel in bits to be specified. By default, an 8-bit
channel will be used, and the driver will be named libOSMesa. Other
options are 16- and 32-bit color channels, which will add the bit size
to the library name. For example, <code>--with-osmesa-bits=16</code>
will create the libOSMesa16 library with a 16-bit color channel.
<a name="library">
<h2>3. Library Options</h2>
The configure script provides more fine grained control over the GL
libraries that will be built. More details on the specific GL libraries
can be found in the <a href="install.html">basic installation
<a name="glu">
<li><b><em>GLU</em></b> - The libGLU library will be built by default
on all drivers. This can be disable with the option
<a name="glw">
<li><b><em>GLw</em></b> - The libGLw library will be built by default
if libGLU has been enabled. This can be disable with the option
<a name="glut">
<li><b><em>GLUT</em></b> - The libglut library will be built by default
if libGLU has been enabled and the glut source code from the MesaGLUT
tarball is available. This can be disable with the option
<a name="demos">
<h2>4. Demo Program Options</h2>
There are many demonstration programs in the MesaDemos tarball. If the
programs are available when <code>./configure</code> is run, a subset of
the programs will be built depending on the driver and library options
chosen. See the directory <code>progs</code> for the full set of demos.
<li><code>--with-demos=DEMOS,DEMOS,...</code> - This option allows a
specific set of demo programs to be built. For example,
<code>--with-demos="xdemos,slang"</code>. Beware that if this option is
used, it will not be ensured that the necessary GL libraries will be
<li><code>--without-demos</code> - This completely disables building the
demo programs. It is equivalent to <code>--with-demos=no</code>.
......@@ -187,24 +187,7 @@ has Mesa packages (like RPM or DEB) which you can easily install.
<h2><a name="part2">2.2 Running <code>configure; make</code> doesn't Work</a></h2>
Mesa no longer supports GNU autoconf/automake. Why?
<li>It seemed to seldom work on anything but Linux
<li>The config files were hard to maintain and hard to understand
<li>libtool caused a lot of grief
Now Mesa again uses a conventional Makefile system (as it did originally).
Basically, each Makefile in the tree includes one of the configuration
files from the config/ directory.
The config files specify all the variables for a variety of popular systems.
<h2><a name="part2">2.3 I get undefined symbols such as bgnpolygon, v3f, etc...</a></h2>
<h2><a name="part2">2.2 I get undefined symbols such as bgnpolygon, v3f, etc...</a></h2>
<a name="part2">You're application is written in IRIS GL, not OpenGL.
IRIS GL was the predecessor to OpenGL and is a different thing (almost)
......@@ -213,7 +196,7 @@ Mesa's not the solution.
<h2><a name="part2">2.4 Where is the GLUT library?</a></h2>
<h2><a name="part2">2.3 Where is the GLUT library?</a></h2>
<a name="part2">GLUT (OpenGL Utility Toolkit) is in the separate MesaGLUT-x.y.z.tar.gz file.
If you don't already have GLUT installed, you should grab the MesaGLUT
......@@ -222,7 +205,7 @@ package and compile it with the rest of Mesa.
<h2><a name="part2">2.5 What's the proper place for the libraries and headers?</a></h2>
<h2><a name="part2">2.4 What's the proper place for the libraries and headers?</a></h2>
<a name="part2">On Linux-based systems you'll want to follow the
</a><a href=""
......@@ -24,7 +24,13 @@
<h3>1.1 Compilation</h3>
Mesa may be compiled in several different ways:
Mesa is built by reading Makefile stubs from the configs directory.
There are configurations for many Unix variants and different Mesa
options. Type <b>make</b> from the top-level directory to see a list of
supported system configurations. Alternatively, an autoconf system can
be used to create a Makefile stub for your system. See the <a
href="autoconf.html">autoconf instructions</a> for more details. Mesa
may be compiled in several ways using the predefined configurations:
<li><b><em>Stand-alone/Xlib mode</em></b> - Mesa will be compiled as
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment