Newer Older
1 2 3 4 5 6 7 8 9 10 11
Sections in this file describe:
 - introduction and overview
 - low-level vs. high-level API
 - version numbers
 - options to the configure script
 - ABI stability policy


D-Bus is a simple system for interprocess communication and coordination.

13 14 15 16
The "and coordination" part is important; D-Bus provides a bus daemon that does things like:
 - notify applications when other apps exit
 - start services on demand
 - support single-instance applications
17 18 19 20

See for lots of documentation, 
mailing lists, etc.

21 22 23 24 25 26 27 28 29 30 31
See also the file HACKING for notes of interest to developers working on D-Bus.

If you're considering D-Bus for use in a project, you should be aware
that D-Bus was designed for a couple of specific use cases, a "system
bus" and a "desktop session bus." These are documented in more detail
in the D-Bus specification and FAQ available on the web site.

If your use-case isn't one of these, D-Bus may still be useful, but
only by accident; so you should evaluate carefully whether D-Bus makes
sense for your project.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

If you find a security vulnerability that is not known to the public,
please report it privately to
or by reporting a bug that is marked as
restricted to the "D-BUS security group" (you might need to "Show
Advanced Fields" to have that option).

On Unix systems, the system bus (dbus-daemon --system) is designed
to be a security boundary between users with different privileges.

On Unix systems, the session bus (dbus-daemon --session) is designed
to be used by a single user, and only accessible by that user.

We do not currently consider D-Bus on Windows to be security-supported,
and we do not recommend allowing untrusted users to access Windows
D-Bus via TCP.

Note: low-level API vs. high-level binding APIs
52 53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
A core concept of the D-Bus implementation is that "libdbus" is
intended to be a low-level API. Most programmers are intended to use
the bindings to GLib, Qt, Python, Mono, Java, or whatever. These
bindings have varying levels of completeness and are maintained as
separate projects from the main D-Bus package. The main D-Bus package
contains the low-level libdbus, the bus daemon, and a few command-line
tools such as dbus-launch.

If you use the low-level API directly, you're signing up for some
pain. Think of the low-level API as analogous to Xlib or GDI, and the
high-level API as analogous to Qt/GTK+/HTML.

Version numbers

D-Bus uses the common "Linux kernel" versioning system, where
even-numbered minor versions are stable and odd-numbered minor
versions are development snapshots.

So for example, development snapshots: 1.1.1, 1.1.2, 1.1.3, 1.3.4
Stable versions: 1.0, 1.0.1, 1.0.2, 1.2.1, 1.2.3

All pre-1.0 versions were development snapshots.

Development snapshots make no ABI stability guarantees for new ABI
introduced since the last stable release. Development snapshots are
likely to have more bugs than stable releases, obviously.

82 83 84 85 86 87

dbus could be build by using autotools or cmake. 

When using autotools the configure step is initiated by running ./configure 
88 89 90
with or without additional configuration flags. dbus requires GNU Make
(on BSD systems, this is typically called gmake) or a "make" implementation
with compatible extensions.
91 92

When using cmake the configure step is initiated by running the cmake 
Ralf Habacker's avatar
Ralf Habacker committed
program with or without additional configuration flags. 

95 96 97
Configuration flags

98 99
When using autotools, run "./configure --help" to see the possible
configuration options and environment variables.

101 102
When using cmake, inspect README.cmake to see the possible
configuration options and environment variables.
104 105
API/ABI Policy

107 108 109
Now that D-Bus has reached version 1.0, the objective is that all
applications dynamically linked to libdbus will continue working
indefinitely with the most recent system and session bus daemons.

111 112 113
 - The protocol will never be broken again; any message bus should 
   work with any client forever. However, extensions are possible
   where the protocol is extensible.

115 116 117 118
 - If the library API is modified incompatibly, we will rename it 
   as in - in other words, 
   it will always be possible to compile against and use the older 
   API, and apps will always get the API they expect.

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
Interfaces can and probably will be _added_. This means both new
functions and types in libdbus, and new methods exported to
applications by the bus daemon.

The above policy is intended to make D-Bus as API-stable as other
widely-used libraries (such as GTK+, Qt, Xlib, or your favorite
example). If you have questions or concerns they are very welcome on
the D-Bus mailing list.


Odd-numbered minor releases (1.1.x, 1.3.x, 2.1.x, etc. -
major.minor.micro) are devel snapshots for testing, and any new ABI
they introduce relative to the last stable version is subject to
change during the development cycle.

Any ABI found in a stable release, however, is frozen.

ABI will not be added in a stable series if we can help it. i.e. the
ABI of 1.2.0 and 1.2.5 you can expect to be the same, while the ABI of
1.4.x may add more stuff not found in 1.2.x.


We are not yet firmly freezing all runtime dependencies of the libdbus
library. For example, the library may read certain files as part of
its implementation, and these files may move around between versions.

148 149 150
As a result, we don't yet recommend statically linking to
libdbus. Also, reimplementations of the protocol from scratch might
have to work to stay in sync with how libdbus behaves.

152 153 154 155 156
To lock things down and declare static linking and reimplementation to
be safe, we'd like to see all the internal dependencies of libdbus
(for example, files read) well-documented in the specification, and
we'd like to have a high degree of confidence that these dependencies
are supportable over the long term and extensible where required.


160 161 162 163
Note that the high-level bindings are _separate projects_ from the
main D-Bus package, and have their own release cycles, levels of
maturity, and ABI stability policies. Please consult the documentation
for your binding.
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

Bootstrapping D-Bus on new platforms

A full build of D-Bus, with all regression tests enabled and run, has some
dependencies which themselves depend on D-Bus, either for compilation or
for some of *their* regression tests: GLib, dbus-glib and dbus-python are
currently affected.

To avoid circular dependencies, when bootstrapping D-Bus for the first time
on a new OS or CPU architecture, you can either cross-compile some of
those components, or choose the build order and options carefully:

* build and install D-Bus without tests
  - do not use the --enable-modular-tests=yes configure option
  - do not use the --enable-tests=yes configure option
* build and install GLib, again without tests
* use those versions of libdbus and GLib to build and install dbus-glib
* ... and use those to install dbus-python
* rebuild libdbus; this time you can run all of the tests
* rebuild GLib; this time you can run all of the tests