eval.c 81.3 KB
Newer Older
Keith Whitwell's avatar
Keith Whitwell committed
1
/* $Id: eval.c,v 1.6.2.2 2000/07/20 15:54:06 keithw Exp $ */
jtg's avatar
jtg committed
2
3
4

/*
 * Mesa 3-D graphics library
5
 * Version:  3.1
jtg's avatar
jtg committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
 * 
 * Copyright (C) 1999  Brian Paul   All Rights Reserved.
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */


/*
 * eval.c was written by
 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
 *
 * My original implementation of evaluators was simplistic and didn't
 * compute surface normal vectors properly.  Bernd and Volker applied
 * used more sophisticated methods to get better results.
 *
 * Thanks guys!
 */


#ifdef PC_HEADER
#include "all.h"
#else
44
45
46
47
48
49
50
#ifndef XFree86Server
#include <math.h>
#include <stdlib.h>
#include <string.h>
#else
#include "GL/xf86glx.h"
#endif
jtg's avatar
jtg committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#include "context.h"
#include "eval.h"
#include "macros.h"
#include "mmath.h"
#include "types.h"
#include "vbcull.h"
#include "vbfill.h"
#include "vbxform.h"
#endif


static GLfloat inv_tab[MAX_EVAL_ORDER];

/*
 * Do one-time initialization for evaluators.
 */
void gl_init_eval( void )
{
  static int init_flag = 0;
  GLuint i;

  /* Compute a table of nCr (combination) values used by the
   * Bernstein polynomial generator.
   */

  /* KW: precompute 1/x for useful x.
   */
  if (init_flag==0) 
  { 
     for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
	inv_tab[i] = 1.0 / i;
  }

  init_flag = 1;
}



/*
 * Horner scheme for Bezier curves
 * 
 * Bezier curves can be computed via a Horner scheme.
 * Horner is numerically less stable than the de Casteljau
 * algorithm, but it is faster. For curves of degree n 
 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
 * Since stability is not important for displaying curve 
 * points I decided to use the Horner scheme.
 *
 * A cubic Bezier curve with control points b0, b1, b2, b3 can be 
 * written as
 *
 *        (([3]        [3]     )     [3]       )     [3]
 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
 *
 *                                           [n]
 * where s=1-t and the binomial coefficients [i]. These can 
 * be computed iteratively using the identity:
 *
 * [n]               [n  ]             [n]
 * [i] = (n-i+1)/i * [i-1]     and     [0] = 1
 */


static void
horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
                    GLuint dim, GLuint order)
{
  GLfloat s, powert;
  GLuint i, k, bincoeff;

  if(order >= 2)
  { 
    bincoeff = order-1;
    s = 1.0-t;

    for(k=0; k<dim; k++)
      out[k] = s*cp[k] + bincoeff*t*cp[dim+k];

    for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
    {
      bincoeff *= order-i;
      bincoeff *= inv_tab[i];

      for(k=0; k<dim; k++)
        out[k] = s*out[k] + bincoeff*powert*cp[k];
    }
  }
  else /* order=1 -> constant curve */
  { 
    for(k=0; k<dim; k++)
      out[k] = cp[k];
  } 
}

/*
 * Tensor product Bezier surfaces
 *
 * Again the Horner scheme is used to compute a point on a 
 * TP Bezier surface. First a control polygon for a curve
 * on the surface in one parameter direction is computed,
 * then the point on the curve for the other parameter 
 * direction is evaluated.
 *
 * To store the curve control polygon additional storage
 * for max(uorder,vorder) points is needed in the 
 * control net cn.
 */

static void
horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
                   GLuint dim, GLuint uorder, GLuint vorder)
{
  GLfloat *cp = cn + uorder*vorder*dim;
  GLuint i, uinc = vorder*dim;

  if(vorder > uorder)
  {
    if(uorder >= 2)
    { 
      GLfloat s, poweru;
      GLuint j, k, bincoeff;

      /* Compute the control polygon for the surface-curve in u-direction */
      for(j=0; j<vorder; j++)
      {
        GLfloat *ucp = &cn[j*dim];

        /* Each control point is the point for parameter u on a */ 
        /* curve defined by the control polygons in u-direction */
	bincoeff = uorder-1;
	s = 1.0-u;

	for(k=0; k<dim; k++)
	  cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];

	for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; 
            i++, poweru*=u, ucp +=uinc)
	{
	  bincoeff *= uorder-i;
          bincoeff *= inv_tab[i];

	  for(k=0; k<dim; k++)
	    cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
	}
      }
        
      /* Evaluate curve point in v */
      horner_bezier_curve(cp, out, v, dim, vorder);
    }
    else /* uorder=1 -> cn defines a curve in v */
      horner_bezier_curve(cn, out, v, dim, vorder);
  }
  else /* vorder <= uorder */
  {
    if(vorder > 1)
    {
      GLuint i;

      /* Compute the control polygon for the surface-curve in u-direction */
      for(i=0; i<uorder; i++, cn += uinc)
      {
	/* For constant i all cn[i][j] (j=0..vorder) are located */
	/* on consecutive memory locations, so we can use        */
	/* horner_bezier_curve to compute the control points     */

	horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
      }

      /* Evaluate curve point in u */
      horner_bezier_curve(cp, out, u, dim, uorder);
    }
    else  /* vorder=1 -> cn defines a curve in u */
      horner_bezier_curve(cn, out, u, dim, uorder);
  }
}

/*
 * The direct de Casteljau algorithm is used when a point on the
 * surface and the tangent directions spanning the tangent plane
 * should be computed (this is needed to compute normals to the
 * surface). In this case the de Casteljau algorithm approach is
 * nicer because a point and the partial derivatives can be computed 
 * at the same time. To get the correct tangent length du and dv
 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. 
 * Since only the directions are needed, this scaling step is omitted.
 *
 * De Casteljau needs additional storage for uorder*vorder
 * values in the control net cn.
 */

static void
de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
                  GLfloat u, GLfloat v, GLuint dim, 
                  GLuint uorder, GLuint vorder)
{
  GLfloat *dcn = cn + uorder*vorder*dim;
  GLfloat us = 1.0-u, vs = 1.0-v;
  GLuint h, i, j, k;
  GLuint minorder = uorder < vorder ? uorder : vorder;
  GLuint uinc = vorder*dim;
  GLuint dcuinc = vorder;
 
  /* Each component is evaluated separately to save buffer space  */
  /* This does not drasticaly decrease the performance of the     */
  /* algorithm. If additional storage for (uorder-1)*(vorder-1)   */
  /* points would be available, the components could be accessed  */
  /* in the innermost loop which could lead to less cache misses. */

#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] 
#define DCN(I, J) dcn[(I)*dcuinc+(J)]
  if(minorder < 3)
  {
    if(uorder==vorder)
    {
      for(k=0; k<dim; k++)
      {
	/* Derivative direction in u */
	du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
	         v*(CN(1,1,k) - CN(0,1,k));

	/* Derivative direction in v */
	dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + 
	         u*(CN(1,1,k) - CN(1,0,k));

	/* bilinear de Casteljau step */
        out[k] =  us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
	           u*(vs*CN(1,0,k) + v*CN(1,1,k));
      }
    }
    else if(minorder == uorder)
    {
      for(k=0; k<dim; k++)
      {
	/* bilinear de Casteljau step */
	DCN(1,0) =    CN(1,0,k) -   CN(0,0,k);
	DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);

	for(j=0; j<vorder-1; j++)
	{
	  /* for the derivative in u */
	  DCN(1,j+1) =    CN(1,j+1,k) -   CN(0,j+1,k);
	  DCN(1,j)   = vs*DCN(1,j)    + v*DCN(1,j+1);

	  /* for the `point' */
	  DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
	  DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
	}
        
	/* remaining linear de Casteljau steps until the second last step */
	for(h=minorder; h<vorder-1; h++)
	  for(j=0; j<vorder-h; j++)
	  {
	    /* for the derivative in u */
	    DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);

	    /* for the `point' */
	    DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
	  }

	/* derivative direction in v */
	dv[k] = DCN(0,1) - DCN(0,0);

	/* derivative direction in u */
	du[k] =   vs*DCN(1,0) + v*DCN(1,1);

	/* last linear de Casteljau step */
	out[k] =  vs*DCN(0,0) + v*DCN(0,1);
      }
    }
    else /* minorder == vorder */
    {
      for(k=0; k<dim; k++)
      {
	/* bilinear de Casteljau step */
	DCN(0,1) =    CN(0,1,k) -   CN(0,0,k);
	DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
	for(i=0; i<uorder-1; i++)
	{
	  /* for the derivative in v */
	  DCN(i+1,1) =    CN(i+1,1,k) -   CN(i+1,0,k);
	  DCN(i,1)   = us*DCN(i,1)    + u*DCN(i+1,1);

	  /* for the `point' */
	  DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
	  DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
	}
        
	/* remaining linear de Casteljau steps until the second last step */
	for(h=minorder; h<uorder-1; h++)
	  for(i=0; i<uorder-h; i++)
	  {
	    /* for the derivative in v */
	    DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);

	    /* for the `point' */
	    DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
	  }

	/* derivative direction in u */
	du[k] = DCN(1,0) - DCN(0,0);

	/* derivative direction in v */
	dv[k] =   us*DCN(0,1) + u*DCN(1,1);

	/* last linear de Casteljau step */
	out[k] =  us*DCN(0,0) + u*DCN(1,0);
      }
    }
  }
  else if(uorder == vorder)
  {
    for(k=0; k<dim; k++)
    {
      /* first bilinear de Casteljau step */
      for(i=0; i<uorder-1; i++)
      {
	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
	for(j=0; j<vorder-1; j++)
	{
	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
	}
      }

      /* remaining bilinear de Casteljau steps until the second last step */
      for(h=2; h<minorder-1; h++)
	for(i=0; i<uorder-h; i++)
	{
	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
	  for(j=0; j<vorder-h; j++)
	  {
	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
	  }
	}

      /* derivative direction in u */
      du[k] = vs*(DCN(1,0) - DCN(0,0)) +
	       v*(DCN(1,1) - DCN(0,1));

      /* derivative direction in v */
      dv[k] = us*(DCN(0,1) - DCN(0,0)) + 
	       u*(DCN(1,1) - DCN(1,0));

      /* last bilinear de Casteljau step */
      out[k] =  us*(vs*DCN(0,0) + v*DCN(0,1)) +
	         u*(vs*DCN(1,0) + v*DCN(1,1));
    }
  }
  else if(minorder == uorder)
  {
    for(k=0; k<dim; k++)
    {
      /* first bilinear de Casteljau step */
      for(i=0; i<uorder-1; i++)
      {
	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
	for(j=0; j<vorder-1; j++)
	{
	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
	}
      }

      /* remaining bilinear de Casteljau steps until the second last step */
      for(h=2; h<minorder-1; h++)
	for(i=0; i<uorder-h; i++)
	{
	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
	  for(j=0; j<vorder-h; j++)
	  {
	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
	  }
	}

      /* last bilinear de Casteljau step */
      DCN(2,0) =    DCN(1,0) -   DCN(0,0);
      DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
      for(j=0; j<vorder-1; j++)
      {
	/* for the derivative in u */
	DCN(2,j+1) =    DCN(1,j+1) -    DCN(0,j+1);
	DCN(2,j)   = vs*DCN(2,j)    + v*DCN(2,j+1);
	
	/* for the `point' */
	DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
	DCN(0,j)   = vs*DCN(0,j)    + v*DCN(0,j+1);
      }
        
      /* remaining linear de Casteljau steps until the second last step */
      for(h=minorder; h<vorder-1; h++)
	for(j=0; j<vorder-h; j++)
	{
	  /* for the derivative in u */
	  DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
	  
	  /* for the `point' */
	  DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
	}
      
      /* derivative direction in v */
      dv[k] = DCN(0,1) - DCN(0,0);
      
      /* derivative direction in u */
      du[k] =   vs*DCN(2,0) + v*DCN(2,1);
      
      /* last linear de Casteljau step */
      out[k] =  vs*DCN(0,0) + v*DCN(0,1);
    }
  }
  else /* minorder == vorder */
  {
    for(k=0; k<dim; k++)
    {
      /* first bilinear de Casteljau step */
      for(i=0; i<uorder-1; i++)
      {
	DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
	for(j=0; j<vorder-1; j++)
	{
	  DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
	  DCN(i,j)   = vs*DCN(i,j)    + v*DCN(i,j+1);
	}
      }

      /* remaining bilinear de Casteljau steps until the second last step */
      for(h=2; h<minorder-1; h++)
	for(i=0; i<uorder-h; i++)
	{
	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
	  for(j=0; j<vorder-h; j++)
	  {
	    DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
	    DCN(i,j)   = vs*DCN(i,j)   + v*DCN(i,j+1);
	  }
	}

      /* last bilinear de Casteljau step */
      DCN(0,2) =    DCN(0,1) -   DCN(0,0);
      DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
      for(i=0; i<uorder-1; i++)
      {
	/* for the derivative in v */
	DCN(i+1,2) =    DCN(i+1,1)  -   DCN(i+1,0);
	DCN(i,2)   = us*DCN(i,2)    + u*DCN(i+1,2);
	
	/* for the `point' */
	DCN(i+1,0) = vs*DCN(i+1,0)  + v*DCN(i+1,1);
	DCN(i,0)   = us*DCN(i,0)    + u*DCN(i+1,0);
      }
      
      /* remaining linear de Casteljau steps until the second last step */
      for(h=minorder; h<uorder-1; h++)
	for(i=0; i<uorder-h; i++)
	{
	  /* for the derivative in v */
	  DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
	  
	  /* for the `point' */
	  DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
	}
      
      /* derivative direction in u */
      du[k] = DCN(1,0) - DCN(0,0);
      
      /* derivative direction in v */
      dv[k] =   us*DCN(0,2) + u*DCN(1,2);
      
      /* last linear de Casteljau step */
      out[k] =  us*DCN(0,0) + u*DCN(1,0);
    }
  }
#undef DCN
#undef CN
}

/*
 * Return the number of components per control point for any type of
 * evaluator.  Return 0 if bad target.
 */
532
533

static GLint components( GLenum target )
jtg's avatar
jtg committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
{
   switch (target) {
      case GL_MAP1_VERTEX_3:		return 3;
      case GL_MAP1_VERTEX_4:		return 4;
      case GL_MAP1_INDEX:		return 1;
      case GL_MAP1_COLOR_4:		return 4;
      case GL_MAP1_NORMAL:		return 3;
      case GL_MAP1_TEXTURE_COORD_1:	return 1;
      case GL_MAP1_TEXTURE_COORD_2:	return 2;
      case GL_MAP1_TEXTURE_COORD_3:	return 3;
      case GL_MAP1_TEXTURE_COORD_4:	return 4;
      case GL_MAP2_VERTEX_3:		return 3;
      case GL_MAP2_VERTEX_4:		return 4;
      case GL_MAP2_INDEX:		return 1;
      case GL_MAP2_COLOR_4:		return 4;
      case GL_MAP2_NORMAL:		return 3;
      case GL_MAP2_TEXTURE_COORD_1:	return 1;
      case GL_MAP2_TEXTURE_COORD_2:	return 2;
      case GL_MAP2_TEXTURE_COORD_3:	return 3;
      case GL_MAP2_TEXTURE_COORD_4:	return 4;
      default:				return 0;
   }
}


/**********************************************************************/
/***            Copy and deallocate control points                  ***/
/**********************************************************************/


/*
 * Copy 1-parametric evaluator control points from user-specified 
 * memory space to a buffer of contiguous control points.
 * Input:  see glMap1f for details
 * Return:  pointer to buffer of contiguous control points or NULL if out
 *          of memory.
 */
571
572
GLfloat *gl_copy_map_points1f( GLenum target,
                               GLint ustride, GLint uorder,
jtg's avatar
jtg committed
573
574
575
                               const GLfloat *points )
{
   GLfloat *buffer, *p;
576
   GLint i, k, size = components(target);
jtg's avatar
jtg committed
577
578
579
580
581

   if (!points || size==0) {
      return NULL;
   }

582
   buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
jtg's avatar
jtg committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596

   if(buffer) 
      for(i=0, p=buffer; i<uorder; i++, points+=ustride)
	for(k=0; k<size; k++)
	  *p++ = points[k];

   return buffer;
}



/*
 * Same as above but convert doubles to floats.
 */
597
598
599
GLfloat *gl_copy_map_points1d( GLenum target,
			        GLint ustride, GLint uorder,
			        const GLdouble *points )
jtg's avatar
jtg committed
600
601
{
   GLfloat *buffer, *p;
602
   GLint i, k, size = components(target);
jtg's avatar
jtg committed
603
604
605
606
607

   if (!points || size==0) {
      return NULL;
   }

608
   buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
jtg's avatar
jtg committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

   if(buffer)
      for(i=0, p=buffer; i<uorder; i++, points+=ustride)
	for(k=0; k<size; k++)
	  *p++ = (GLfloat) points[k];

   return buffer;
}



/*
 * Copy 2-parametric evaluator control points from user-specified 
 * memory space to a buffer of contiguous control points.
 * Additional memory is allocated to be used by the horner and
 * de Casteljau evaluation schemes.
 *
 * Input:  see glMap2f for details
 * Return:  pointer to buffer of contiguous control points or NULL if out
 *          of memory.
 */
GLfloat *gl_copy_map_points2f( GLenum target,
631
632
633
			        GLint ustride, GLint uorder,
			        GLint vstride, GLint vorder,
			        const GLfloat *points )
jtg's avatar
jtg committed
634
635
636
637
638
{
   GLfloat *buffer, *p;
   GLint i, j, k, size, dsize, hsize;
   GLint uinc;

639
   size = components(target);
jtg's avatar
jtg committed
640
641
642
643
644
645
646
647
648
649
650
651

   if (!points || size==0) {
      return NULL;
   }

   /* max(uorder, vorder) additional points are used in      */
   /* horner evaluation and uorder*vorder additional */
   /* values are needed for de Casteljau                     */
   dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
   hsize = (uorder > vorder ? uorder : vorder)*size;

   if(hsize>dsize)
652
     buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
jtg's avatar
jtg committed
653
   else
654
     buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
jtg's avatar
jtg committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

   /* compute the increment value for the u-loop */
   uinc = ustride - vorder*vstride;

   if (buffer) 
      for (i=0, p=buffer; i<uorder; i++, points += uinc)
	 for (j=0; j<vorder; j++, points += vstride)
	    for (k=0; k<size; k++)
	       *p++ = points[k];

   return buffer;
}



/*
 * Same as above but convert doubles to floats.
 */
GLfloat *gl_copy_map_points2d(GLenum target,
                              GLint ustride, GLint uorder,
                              GLint vstride, GLint vorder,
                              const GLdouble *points )
{
   GLfloat *buffer, *p;
   GLint i, j, k, size, hsize, dsize;
   GLint uinc;

682
   size = components(target);
jtg's avatar
jtg committed
683
684
685
686
687
688
689
690
691
692
693
694

   if (!points || size==0) {
      return NULL;
   }

   /* max(uorder, vorder) additional points are used in      */
   /* horner evaluation and uorder*vorder additional */
   /* values are needed for de Casteljau                     */
   dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
   hsize = (uorder > vorder ? uorder : vorder)*size;

   if(hsize>dsize)
695
     buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
jtg's avatar
jtg committed
696
   else
697
     buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
jtg's avatar
jtg committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

   /* compute the increment value for the u-loop */
   uinc = ustride - vorder*vstride;

   if (buffer) 
      for (i=0, p=buffer; i<uorder; i++, points += uinc)
	 for (j=0; j<vorder; j++, points += vstride)
	    for (k=0; k<size; k++)
	       *p++ = (GLfloat) points[k];

   return buffer;
}


/*
 * This function is called by the display list deallocator function to
 * specify that a given set of control points are no longer needed.
 */
void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
{
   struct gl_1d_map *map1 = NULL;
   struct gl_2d_map *map2 = NULL;

   switch (target) {
      case GL_MAP1_VERTEX_3:
         map1 = &ctx->EvalMap.Map1Vertex3;
         break;
      case GL_MAP1_VERTEX_4:
         map1 = &ctx->EvalMap.Map1Vertex4;
	 break;
      case GL_MAP1_INDEX:
         map1 = &ctx->EvalMap.Map1Index;
         break;
      case GL_MAP1_COLOR_4:
         map1 = &ctx->EvalMap.Map1Color4;
         break;
      case GL_MAP1_NORMAL:
         map1 = &ctx->EvalMap.Map1Normal;
	 break;
      case GL_MAP1_TEXTURE_COORD_1:
         map1 = &ctx->EvalMap.Map1Texture1;
	 break;
      case GL_MAP1_TEXTURE_COORD_2:
         map1 = &ctx->EvalMap.Map1Texture2;
	 break;
      case GL_MAP1_TEXTURE_COORD_3:
         map1 = &ctx->EvalMap.Map1Texture3;
	 break;
      case GL_MAP1_TEXTURE_COORD_4:
         map1 = &ctx->EvalMap.Map1Texture4;
	 break;
      case GL_MAP2_VERTEX_3:
         map2 = &ctx->EvalMap.Map2Vertex3;
	 break;
      case GL_MAP2_VERTEX_4:
         map2 = &ctx->EvalMap.Map2Vertex4;
	 break;
      case GL_MAP2_INDEX:
         map2 = &ctx->EvalMap.Map2Index;
	 break;
      case GL_MAP2_COLOR_4:
         map2 = &ctx->EvalMap.Map2Color4;
         break;
      case GL_MAP2_NORMAL:
         map2 = &ctx->EvalMap.Map2Normal;
	 break;
      case GL_MAP2_TEXTURE_COORD_1:
         map2 = &ctx->EvalMap.Map2Texture1;
	 break;
      case GL_MAP2_TEXTURE_COORD_2:
         map2 = &ctx->EvalMap.Map2Texture2;
	 break;
      case GL_MAP2_TEXTURE_COORD_3:
         map2 = &ctx->EvalMap.Map2Texture3;
	 break;
      case GL_MAP2_TEXTURE_COORD_4:
         map2 = &ctx->EvalMap.Map2Texture4;
	 break;
      default:
	 gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
         return;
   }

   if (map1) {
      if (data==map1->Points) {
         /* The control points in the display list are currently */
         /* being used so we can mark them as discard-able. */
         map1->Retain = GL_FALSE;
      }
      else {
         /* The control points in the display list are not currently */
         /* being used. */
790
         FREE( data );
jtg's avatar
jtg committed
791
792
793
794
795
796
797
798
799
800
801
      }
   }
   if (map2) {
      if (data==map2->Points) {
         /* The control points in the display list are currently */
         /* being used so we can mark them as discard-able. */
         map2->Retain = GL_FALSE;
      }
      else {
         /* The control points in the display list are not currently */
         /* being used. */
802
         FREE( data );
jtg's avatar
jtg committed
803
804
805
806
807
808
809
810
811
812
813
814
815
      }
   }

}



/**********************************************************************/
/***                      API entry points                          ***/
/**********************************************************************/


/*
816
817
818
 * Note that the array of control points must be 'unpacked' at this time.
 * Input:  retain - if TRUE, this control point data is also in a display
 *                  list and can't be freed until the list is freed.
jtg's avatar
jtg committed
819
 */
820
821
822
void gl_Map1f( GLcontext* ctx, GLenum target,
               GLfloat u1, GLfloat u2, GLint stride,
               GLint order, const GLfloat *points, GLboolean retain )
jtg's avatar
jtg committed
823
824
825
{
   GLint k;

826
827
828
829
   if (!points) {
      gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
      return;
   }
jtg's avatar
jtg committed
830

831
832
   /* may be a new stride after copying control points */
   stride = components( target );
833

834
835
836
   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");

   if (u1==u2) {
jtg's avatar
jtg committed
837
838
839
      gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
      return;
   }
840
841

   if (order<1 || order>MAX_EVAL_ORDER) {
jtg's avatar
jtg committed
842
843
844
845
      gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
      return;
   }

846
847
   k = components( target );
   if (k==0) {
jtg's avatar
jtg committed
848
849
850
      gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
   }

851
   if (stride < k) {
jtg's avatar
jtg committed
852
853
854
855
856
857
      gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
      return;
   }

   switch (target) {
      case GL_MAP1_VERTEX_3:
858
         ctx->EvalMap.Map1Vertex3.Order = order;
jtg's avatar
jtg committed
859
860
861
	 ctx->EvalMap.Map1Vertex3.u1 = u1;
	 ctx->EvalMap.Map1Vertex3.u2 = u2;
	 ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
862
863
	 if (ctx->EvalMap.Map1Vertex3.Points
             && !ctx->EvalMap.Map1Vertex3.Retain) {
864
	    FREE( ctx->EvalMap.Map1Vertex3.Points );
865
866
867
	 }
	 ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
         ctx->EvalMap.Map1Vertex3.Retain = retain;
jtg's avatar
jtg committed
868
869
	 break;
      case GL_MAP1_VERTEX_4:
870
         ctx->EvalMap.Map1Vertex4.Order = order;
jtg's avatar
jtg committed
871
872
873
	 ctx->EvalMap.Map1Vertex4.u1 = u1;
	 ctx->EvalMap.Map1Vertex4.u2 = u2;
	 ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
874
875
	 if (ctx->EvalMap.Map1Vertex4.Points
             && !ctx->EvalMap.Map1Vertex4.Retain) {
876
	    FREE( ctx->EvalMap.Map1Vertex4.Points );
877
878
879
	 }
	 ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Vertex4.Retain = retain;
jtg's avatar
jtg committed
880
881
	 break;
      case GL_MAP1_INDEX:
882
         ctx->EvalMap.Map1Index.Order = order;
jtg's avatar
jtg committed
883
884
885
	 ctx->EvalMap.Map1Index.u1 = u1;
	 ctx->EvalMap.Map1Index.u2 = u2;
	 ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
886
887
	 if (ctx->EvalMap.Map1Index.Points
             && !ctx->EvalMap.Map1Index.Retain) {
888
	    FREE( ctx->EvalMap.Map1Index.Points );
889
890
891
	 }
	 ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Index.Retain = retain;
jtg's avatar
jtg committed
892
893
	 break;
      case GL_MAP1_COLOR_4:
894
         ctx->EvalMap.Map1Color4.Order = order;
jtg's avatar
jtg committed
895
896
897
	 ctx->EvalMap.Map1Color4.u1 = u1;
	 ctx->EvalMap.Map1Color4.u2 = u2;
	 ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
898
899
	 if (ctx->EvalMap.Map1Color4.Points
             && !ctx->EvalMap.Map1Color4.Retain) {
900
	    FREE( ctx->EvalMap.Map1Color4.Points );
901
902
903
	 }
	 ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Color4.Retain = retain;
jtg's avatar
jtg committed
904
905
	 break;
      case GL_MAP1_NORMAL:
906
         ctx->EvalMap.Map1Normal.Order = order;
jtg's avatar
jtg committed
907
908
909
	 ctx->EvalMap.Map1Normal.u1 = u1;
	 ctx->EvalMap.Map1Normal.u2 = u2;
	 ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
910
911
	 if (ctx->EvalMap.Map1Normal.Points
             && !ctx->EvalMap.Map1Normal.Retain) {
912
	    FREE( ctx->EvalMap.Map1Normal.Points );
913
914
915
	 }
	 ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Normal.Retain = retain;
jtg's avatar
jtg committed
916
917
	 break;
      case GL_MAP1_TEXTURE_COORD_1:
918
         ctx->EvalMap.Map1Texture1.Order = order;
jtg's avatar
jtg committed
919
920
921
	 ctx->EvalMap.Map1Texture1.u1 = u1;
	 ctx->EvalMap.Map1Texture1.u2 = u2;
	 ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
922
923
	 if (ctx->EvalMap.Map1Texture1.Points
             && !ctx->EvalMap.Map1Texture1.Retain) {
924
	    FREE( ctx->EvalMap.Map1Texture1.Points );
925
926
927
	 }
	 ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Texture1.Retain = retain;
jtg's avatar
jtg committed
928
929
	 break;
      case GL_MAP1_TEXTURE_COORD_2:
930
         ctx->EvalMap.Map1Texture2.Order = order;
jtg's avatar
jtg committed
931
932
933
	 ctx->EvalMap.Map1Texture2.u1 = u1;
	 ctx->EvalMap.Map1Texture2.u2 = u2;
	 ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
934
935
	 if (ctx->EvalMap.Map1Texture2.Points
             && !ctx->EvalMap.Map1Texture2.Retain) {
936
	    FREE( ctx->EvalMap.Map1Texture2.Points );
937
938
939
	 }
	 ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Texture2.Retain = retain;
jtg's avatar
jtg committed
940
941
	 break;
      case GL_MAP1_TEXTURE_COORD_3:
942
         ctx->EvalMap.Map1Texture3.Order = order;
jtg's avatar
jtg committed
943
944
945
	 ctx->EvalMap.Map1Texture3.u1 = u1;
	 ctx->EvalMap.Map1Texture3.u2 = u2;
	 ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
946
947
	 if (ctx->EvalMap.Map1Texture3.Points
             && !ctx->EvalMap.Map1Texture3.Retain) {
948
	    FREE( ctx->EvalMap.Map1Texture3.Points );
949
950
951
	 }
	 ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Texture3.Retain = retain;
jtg's avatar
jtg committed
952
953
	 break;
      case GL_MAP1_TEXTURE_COORD_4:
954
         ctx->EvalMap.Map1Texture4.Order = order;
jtg's avatar
jtg committed
955
956
957
	 ctx->EvalMap.Map1Texture4.u1 = u1;
	 ctx->EvalMap.Map1Texture4.u2 = u2;
	 ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
958
959
	 if (ctx->EvalMap.Map1Texture4.Points
             && !ctx->EvalMap.Map1Texture4.Retain) {
960
	    FREE( ctx->EvalMap.Map1Texture4.Points );
961
962
963
	 }
	 ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
	 ctx->EvalMap.Map1Texture4.Retain = retain;
jtg's avatar
jtg committed
964
965
966
967
968
969
970
971
	 break;
      default:
         gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
   }
}



972

973
974
975
976
977
978
979
980
981
/*
 * Note that the array of control points must be 'unpacked' at this time.
 * Input:  retain - if TRUE, this control point data is also in a display
 *                  list and can't be freed until the list is freed.
 */
void gl_Map2f( GLcontext* ctx, GLenum target,
	      GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
	      GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
	      const GLfloat *points, GLboolean retain )
982
{
jtg's avatar
jtg committed
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
   GLint k;

   ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");

   if (u1==u2) {
      gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
      return;
   }

   if (v1==v2) {
      gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
      return;
   }

   if (uorder<1 || uorder>MAX_EVAL_ORDER) {
      gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
      return;
   }

   if (vorder<1 || vorder>MAX_EVAL_ORDER) {
      gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
      return;
   }

1007
   k = components( target );
jtg's avatar
jtg committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
   if (k==0) {
      gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
   }

   if (ustride < k) {
      gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
      return;
   }
   if (vstride < k) {
      gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
      return;
   }

   switch (target) {
      case GL_MAP2_VERTEX_3:
         ctx->EvalMap.Map2Vertex3.Uorder = uorder;
	 ctx->EvalMap.Map2Vertex3.u1 = u1;
	 ctx->EvalMap.Map2Vertex3.u2 = u2;
	 ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Vertex3.Vorder = vorder;
	 ctx->EvalMap.Map2Vertex3.v1 = v1;
	 ctx->EvalMap.Map2Vertex3.v2 = v2;
	 ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
1031
1032
	 if (ctx->EvalMap.Map2Vertex3.Points
             && !ctx->EvalMap.Map2Vertex3.Retain) {
1033
	    FREE( ctx->EvalMap.Map2Vertex3.Points );
1034
1035
1036
	 }
	 ctx->EvalMap.Map2Vertex3.Retain = retain;
	 ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
	 break;
      case GL_MAP2_VERTEX_4:
         ctx->EvalMap.Map2Vertex4.Uorder = uorder;
	 ctx->EvalMap.Map2Vertex4.u1 = u1;
	 ctx->EvalMap.Map2Vertex4.u2 = u2;
	 ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Vertex4.Vorder = vorder;
	 ctx->EvalMap.Map2Vertex4.v1 = v1;
	 ctx->EvalMap.Map2Vertex4.v2 = v2;
	 ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
1047
1048
	 if (ctx->EvalMap.Map2Vertex4.Points
             && !ctx->EvalMap.Map2Vertex4.Retain) {
1049
	    FREE( ctx->EvalMap.Map2Vertex4.Points );
1050
1051
1052
	 }
	 ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
	 ctx->EvalMap.Map2Vertex4.Retain = retain;
jtg's avatar
jtg committed
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
	 break;
      case GL_MAP2_INDEX:
         ctx->EvalMap.Map2Index.Uorder = uorder;
	 ctx->EvalMap.Map2Index.u1 = u1;
	 ctx->EvalMap.Map2Index.u2 = u2;
	 ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Index.Vorder = vorder;
	 ctx->EvalMap.Map2Index.v1 = v1;
	 ctx->EvalMap.Map2Index.v2 = v2;
	 ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
1063
1064
	 if (ctx->EvalMap.Map2Index.Points
             && !ctx->EvalMap.Map2Index.Retain) {
1065
	    FREE( ctx->EvalMap.Map2Index.Points );
1066
1067
1068
	 }
	 ctx->EvalMap.Map2Index.Retain = retain;
	 ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
	 break;
      case GL_MAP2_COLOR_4:
         ctx->EvalMap.Map2Color4.Uorder = uorder;
	 ctx->EvalMap.Map2Color4.u1 = u1;
	 ctx->EvalMap.Map2Color4.u2 = u2;
	 ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Color4.Vorder = vorder;
	 ctx->EvalMap.Map2Color4.v1 = v1;
	 ctx->EvalMap.Map2Color4.v2 = v2;
	 ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
1079
1080
	 if (ctx->EvalMap.Map2Color4.Points
             && !ctx->EvalMap.Map2Color4.Retain) {
1081
	    FREE( ctx->EvalMap.Map2Color4.Points );
1082
1083
1084
	 }
	 ctx->EvalMap.Map2Color4.Retain = retain;
	 ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
	 break;
      case GL_MAP2_NORMAL:
         ctx->EvalMap.Map2Normal.Uorder = uorder;
	 ctx->EvalMap.Map2Normal.u1 = u1;
	 ctx->EvalMap.Map2Normal.u2 = u2;
	 ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Normal.Vorder = vorder;
	 ctx->EvalMap.Map2Normal.v1 = v1;
	 ctx->EvalMap.Map2Normal.v2 = v2;
	 ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
1095
1096
	 if (ctx->EvalMap.Map2Normal.Points
             && !ctx->EvalMap.Map2Normal.Retain) {
1097
	    FREE( ctx->EvalMap.Map2Normal.Points );
1098
1099
1100
	 }
	 ctx->EvalMap.Map2Normal.Retain = retain;
	 ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
	 break;
      case GL_MAP2_TEXTURE_COORD_1:
         ctx->EvalMap.Map2Texture1.Uorder = uorder;
	 ctx->EvalMap.Map2Texture1.u1 = u1;
	 ctx->EvalMap.Map2Texture1.u2 = u2;
	 ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Texture1.Vorder = vorder;
	 ctx->EvalMap.Map2Texture1.v1 = v1;
	 ctx->EvalMap.Map2Texture1.v2 = v2;
	 ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
1111
1112
	 if (ctx->EvalMap.Map2Texture1.Points
             && !ctx->EvalMap.Map2Texture1.Retain) {
1113
	    FREE( ctx->EvalMap.Map2Texture1.Points );
1114
1115
1116
	 }
	 ctx->EvalMap.Map2Texture1.Retain = retain;
	 ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
	 break;
      case GL_MAP2_TEXTURE_COORD_2:
         ctx->EvalMap.Map2Texture2.Uorder = uorder;
	 ctx->EvalMap.Map2Texture2.u1 = u1;
	 ctx->EvalMap.Map2Texture2.u2 = u2;
	 ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Texture2.Vorder = vorder;
	 ctx->EvalMap.Map2Texture2.v1 = v1;
	 ctx->EvalMap.Map2Texture2.v2 = v2;
	 ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
1127
1128
	 if (ctx->EvalMap.Map2Texture2.Points
             && !ctx->EvalMap.Map2Texture2.Retain) {
1129
	    FREE( ctx->EvalMap.Map2Texture2.Points );
1130
1131
1132
	 }
	 ctx->EvalMap.Map2Texture2.Retain = retain;
	 ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
	 break;
      case GL_MAP2_TEXTURE_COORD_3:
         ctx->EvalMap.Map2Texture3.Uorder = uorder;
	 ctx->EvalMap.Map2Texture3.u1 = u1;
	 ctx->EvalMap.Map2Texture3.u2 = u2;
	 ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Texture3.Vorder = vorder;
	 ctx->EvalMap.Map2Texture3.v1 = v1;
	 ctx->EvalMap.Map2Texture3.v2 = v2;
	 ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
1143
1144
	 if (ctx->EvalMap.Map2Texture3.Points
             && !ctx->EvalMap.Map2Texture3.Retain) {
1145
	    FREE( ctx->EvalMap.Map2Texture3.Points );
1146
1147
1148
	 }
	 ctx->EvalMap.Map2Texture3.Retain = retain;
	 ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
	 break;
      case GL_MAP2_TEXTURE_COORD_4:
         ctx->EvalMap.Map2Texture4.Uorder = uorder;
	 ctx->EvalMap.Map2Texture4.u1 = u1;
	 ctx->EvalMap.Map2Texture4.u2 = u2;
	 ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
         ctx->EvalMap.Map2Texture4.Vorder = vorder;
	 ctx->EvalMap.Map2Texture4.v1 = v1;
	 ctx->EvalMap.Map2Texture4.v2 = v2;
	 ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
1159
1160
	 if (ctx->EvalMap.Map2Texture4.Points
             && !ctx->EvalMap.Map2Texture4.Retain) {
1161
	    FREE( ctx->EvalMap.Map2Texture4.Points );
1162
1163
1164
	 }
	 ctx->EvalMap.Map2Texture4.Retain = retain;
	 ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
jtg's avatar
jtg committed
1165
1166
1167
1168
1169
1170
1171
	 break;
      default:
         gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
   }
}


1172
   
1173
1174


1175
void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
1176
{
jtg's avatar
jtg committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
   GLint i, n;
   GLfloat *data;

   switch (query) {
      case GL_COEFF:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       data = ctx->EvalMap.Map1Color4.Points;
	       n = ctx->EvalMap.Map1Color4.Order * 4;
	       break;
	    case GL_MAP1_INDEX:
	       data = ctx->EvalMap.Map1Index.Points;
	       n = ctx->EvalMap.Map1Index.Order;
	       break;
	    case GL_MAP1_NORMAL:
	       data = ctx->EvalMap.Map1Normal.Points;
	       n = ctx->EvalMap.Map1Normal.Order * 3;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       data = ctx->EvalMap.Map1Texture1.Points;
	       n = ctx->EvalMap.Map1Texture1.Order * 1;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       data = ctx->EvalMap.Map1Texture2.Points;
	       n = ctx->EvalMap.Map1Texture2.Order * 2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       data = ctx->EvalMap.Map1Texture3.Points;
	       n = ctx->EvalMap.Map1Texture3.Order * 3;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       data = ctx->EvalMap.Map1Texture4.Points;
	       n = ctx->EvalMap.Map1Texture4.Order * 4;
	       break;
	    case GL_MAP1_VERTEX_3:
	       data = ctx->EvalMap.Map1Vertex3.Points;
	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
	       break;
	    case GL_MAP1_VERTEX_4:
	       data = ctx->EvalMap.Map1Vertex4.Points;
	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
	       break;
	    case GL_MAP2_COLOR_4:
	       data = ctx->EvalMap.Map2Color4.Points;
	       n = ctx->EvalMap.Map2Color4.Uorder
                 * ctx->EvalMap.Map2Color4.Vorder * 4;
	       break;
	    case GL_MAP2_INDEX:
	       data = ctx->EvalMap.Map2Index.Points;
	       n = ctx->EvalMap.Map2Index.Uorder
                 * ctx->EvalMap.Map2Index.Vorder;
	       break;
	    case GL_MAP2_NORMAL:
	       data = ctx->EvalMap.Map2Normal.Points;
	       n = ctx->EvalMap.Map2Normal.Uorder
                 * ctx->EvalMap.Map2Normal.Vorder * 3;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       data = ctx->EvalMap.Map2Texture1.Points;
	       n = ctx->EvalMap.Map2Texture1.Uorder
                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       data = ctx->EvalMap.Map2Texture2.Points;
	       n = ctx->EvalMap.Map2Texture2.Uorder
                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       data = ctx->EvalMap.Map2Texture3.Points;
	       n = ctx->EvalMap.Map2Texture3.Uorder
                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       data = ctx->EvalMap.Map2Texture4.Points;
	       n = ctx->EvalMap.Map2Texture4.Uorder
                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
	       break;
	    case GL_MAP2_VERTEX_3:
	       data = ctx->EvalMap.Map2Vertex3.Points;
	       n = ctx->EvalMap.Map2Vertex3.Uorder
                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
	       break;
	    case GL_MAP2_VERTEX_4:
	       data = ctx->EvalMap.Map2Vertex4.Points;
	       n = ctx->EvalMap.Map2Vertex4.Uorder
                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
	       return;
	 }
	 if (data) {
	    for (i=0;i<n;i++) {
	       v[i] = data[i];
	    }
	 }
         break;
      case GL_ORDER:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       *v = ctx->EvalMap.Map1Color4.Order;
	       break;
	    case GL_MAP1_INDEX:
	       *v = ctx->EvalMap.Map1Index.Order;
	       break;
	    case GL_MAP1_NORMAL:
	       *v = ctx->EvalMap.Map1Normal.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       *v = ctx->EvalMap.Map1Texture1.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       *v = ctx->EvalMap.Map1Texture2.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       *v = ctx->EvalMap.Map1Texture3.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       *v = ctx->EvalMap.Map1Texture4.Order;
	       break;
	    case GL_MAP1_VERTEX_3:
	       *v = ctx->EvalMap.Map1Vertex3.Order;
	       break;
	    case GL_MAP1_VERTEX_4:
	       *v = ctx->EvalMap.Map1Vertex4.Order;
	       break;
	    case GL_MAP2_COLOR_4:
	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
	       break;
	    case GL_MAP2_INDEX:
	       v[0] = ctx->EvalMap.Map2Index.Uorder;
	       v[1] = ctx->EvalMap.Map2Index.Vorder;
	       break;
	    case GL_MAP2_NORMAL:
	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
	       break;
	    case GL_MAP2_VERTEX_3:
	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
	       break;
	    case GL_MAP2_VERTEX_4:
	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
	       return;
	 }
         break;
      case GL_DOMAIN:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       v[0] = ctx->EvalMap.Map1Color4.u1;
	       v[1] = ctx->EvalMap.Map1Color4.u2;
	       break;
	    case GL_MAP1_INDEX:
	       v[0] = ctx->EvalMap.Map1Index.u1;
	       v[1] = ctx->EvalMap.Map1Index.u2;
	       break;
	    case GL_MAP1_NORMAL:
	       v[0] = ctx->EvalMap.Map1Normal.u1;
	       v[1] = ctx->EvalMap.Map1Normal.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       v[0] = ctx->EvalMap.Map1Texture1.u1;
	       v[1] = ctx->EvalMap.Map1Texture1.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       v[0] = ctx->EvalMap.Map1Texture2.u1;
	       v[1] = ctx->EvalMap.Map1Texture2.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       v[0] = ctx->EvalMap.Map1Texture3.u1;
	       v[1] = ctx->EvalMap.Map1Texture3.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       v[0] = ctx->EvalMap.Map1Texture4.u1;
	       v[1] = ctx->EvalMap.Map1Texture4.u2;
	       break;
	    case GL_MAP1_VERTEX_3:
	       v[0] = ctx->EvalMap.Map1Vertex3.u1;
	       v[1] = ctx->EvalMap.Map1Vertex3.u2;
	       break;
	    case GL_MAP1_VERTEX_4:
	       v[0] = ctx->EvalMap.Map1Vertex4.u1;
	       v[1] = ctx->EvalMap.Map1Vertex4.u2;
	       break;
	    case GL_MAP2_COLOR_4:
	       v[0] = ctx->EvalMap.Map2Color4.u1;
	       v[1] = ctx->EvalMap.Map2Color4.u2;
	       v[2] = ctx->EvalMap.Map2Color4.v1;
	       v[3] = ctx->EvalMap.Map2Color4.v2;
	       break;
	    case GL_MAP2_INDEX:
	       v[0] = ctx->EvalMap.Map2Index.u1;
	       v[1] = ctx->EvalMap.Map2Index.u2;
	       v[2] = ctx->EvalMap.Map2Index.v1;
	       v[3] = ctx->EvalMap.Map2Index.v2;
	       break;
	    case GL_MAP2_NORMAL:
	       v[0] = ctx->EvalMap.Map2Normal.u1;
	       v[1] = ctx->EvalMap.Map2Normal.u2;
	       v[2] = ctx->EvalMap.Map2Normal.v1;
	       v[3] = ctx->EvalMap.Map2Normal.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       v[0] = ctx->EvalMap.Map2Texture1.u1;
	       v[1] = ctx->EvalMap.Map2Texture1.u2;
	       v[2] = ctx->EvalMap.Map2Texture1.v1;
	       v[3] = ctx->EvalMap.Map2Texture1.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       v[0] = ctx->EvalMap.Map2Texture2.u1;
	       v[1] = ctx->EvalMap.Map2Texture2.u2;
	       v[2] = ctx->EvalMap.Map2Texture2.v1;
	       v[3] = ctx->EvalMap.Map2Texture2.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       v[0] = ctx->EvalMap.Map2Texture3.u1;
	       v[1] = ctx->EvalMap.Map2Texture3.u2;
	       v[2] = ctx->EvalMap.Map2Texture3.v1;
	       v[3] = ctx->EvalMap.Map2Texture3.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       v[0] = ctx->EvalMap.Map2Texture4.u1;
	       v[1] = ctx->EvalMap.Map2Texture4.u2;
	       v[2] = ctx->EvalMap.Map2Texture4.v1;
	       v[3] = ctx->EvalMap.Map2Texture4.v2;
	       break;
	    case GL_MAP2_VERTEX_3:
	       v[0] = ctx->EvalMap.Map2Vertex3.u1;
	       v[1] = ctx->EvalMap.Map2Vertex3.u2;
	       v[2] = ctx->EvalMap.Map2Vertex3.v1;
	       v[3] = ctx->EvalMap.Map2Vertex3.v2;
	       break;
	    case GL_MAP2_VERTEX_4:
	       v[0] = ctx->EvalMap.Map2Vertex4.u1;
	       v[1] = ctx->EvalMap.Map2Vertex4.u2;
	       v[2] = ctx->EvalMap.Map2Vertex4.v1;
	       v[3] = ctx->EvalMap.Map2Vertex4.v2;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
	 }
         break;
      default:
         gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
   }
}


1446
void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
jtg's avatar
jtg committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
{
   GLint i, n;
   GLfloat *data;

   switch (query) {
      case GL_COEFF:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       data = ctx->EvalMap.Map1Color4.Points;
	       n = ctx->EvalMap.Map1Color4.Order * 4;
	       break;
	    case GL_MAP1_INDEX:
	       data = ctx->EvalMap.Map1Index.Points;
	       n = ctx->EvalMap.Map1Index.Order;
	       break;
	    case GL_MAP1_NORMAL:
	       data = ctx->EvalMap.Map1Normal.Points;
	       n = ctx->EvalMap.Map1Normal.Order * 3;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       data = ctx->EvalMap.Map1Texture1.Points;
	       n = ctx->EvalMap.Map1Texture1.Order * 1;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       data = ctx->EvalMap.Map1Texture2.Points;
	       n = ctx->EvalMap.Map1Texture2.Order * 2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       data = ctx->EvalMap.Map1Texture3.Points;
	       n = ctx->EvalMap.Map1Texture3.Order * 3;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       data = ctx->EvalMap.Map1Texture4.Points;
	       n = ctx->EvalMap.Map1Texture4.Order * 4;
	       break;
	    case GL_MAP1_VERTEX_3:
	       data = ctx->EvalMap.Map1Vertex3.Points;
	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
	       break;
	    case GL_MAP1_VERTEX_4:
	       data = ctx->EvalMap.Map1Vertex4.Points;
	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
	       break;
	    case GL_MAP2_COLOR_4:
	       data = ctx->EvalMap.Map2Color4.Points;
	       n = ctx->EvalMap.Map2Color4.Uorder
                 * ctx->EvalMap.Map2Color4.Vorder * 4;
	       break;
	    case GL_MAP2_INDEX:
	       data = ctx->EvalMap.Map2Index.Points;
	       n = ctx->EvalMap.Map2Index.Uorder
                 * ctx->EvalMap.Map2Index.Vorder;
	       break;
	    case GL_MAP2_NORMAL:
	       data = ctx->EvalMap.Map2Normal.Points;
	       n = ctx->EvalMap.Map2Normal.Uorder
                 * ctx->EvalMap.Map2Normal.Vorder * 3;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       data = ctx->EvalMap.Map2Texture1.Points;
	       n = ctx->EvalMap.Map2Texture1.Uorder
                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       data = ctx->EvalMap.Map2Texture2.Points;
	       n = ctx->EvalMap.Map2Texture2.Uorder
                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       data = ctx->EvalMap.Map2Texture3.Points;
	       n = ctx->EvalMap.Map2Texture3.Uorder
                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       data = ctx->EvalMap.Map2Texture4.Points;
	       n = ctx->EvalMap.Map2Texture4.Uorder
                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
	       break;
	    case GL_MAP2_VERTEX_3:
	       data = ctx->EvalMap.Map2Vertex3.Points;
	       n = ctx->EvalMap.Map2Vertex3.Uorder
                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
	       break;
	    case GL_MAP2_VERTEX_4:
	       data = ctx->EvalMap.Map2Vertex4.Points;
	       n = ctx->EvalMap.Map2Vertex4.Uorder
                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
	       return;
	 }
	 if (data) {
	    for (i=0;i<n;i++) {
	       v[i] = data[i];
	    }
	 }
         break;
      case GL_ORDER:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       *v = ctx->EvalMap.Map1Color4.Order;
	       break;
	    case GL_MAP1_INDEX:
	       *v = ctx->EvalMap.Map1Index.Order;
	       break;
	    case GL_MAP1_NORMAL:
	       *v = ctx->EvalMap.Map1Normal.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       *v = ctx->EvalMap.Map1Texture1.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       *v = ctx->EvalMap.Map1Texture2.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       *v = ctx->EvalMap.Map1Texture3.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       *v = ctx->EvalMap.Map1Texture4.Order;
	       break;
	    case GL_MAP1_VERTEX_3:
	       *v = ctx->EvalMap.Map1Vertex3.Order;
	       break;
	    case GL_MAP1_VERTEX_4:
	       *v = ctx->EvalMap.Map1Vertex4.Order;
	       break;
	    case GL_MAP2_COLOR_4:
	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
	       break;
	    case GL_MAP2_INDEX:
	       v[0] = ctx->EvalMap.Map2Index.Uorder;
	       v[1] = ctx->EvalMap.Map2Index.Vorder;
	       break;
	    case GL_MAP2_NORMAL:
	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
	       break;
	    case GL_MAP2_VERTEX_3:
	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
	       break;
	    case GL_MAP2_VERTEX_4:
	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
	       return;
	 }
         break;
      case GL_DOMAIN:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       v[0] = ctx->EvalMap.Map1Color4.u1;
	       v[1] = ctx->EvalMap.Map1Color4.u2;
	       break;
	    case GL_MAP1_INDEX:
	       v[0] = ctx->EvalMap.Map1Index.u1;
	       v[1] = ctx->EvalMap.Map1Index.u2;
	       break;
	    case GL_MAP1_NORMAL:
	       v[0] = ctx->EvalMap.Map1Normal.u1;
	       v[1] = ctx->EvalMap.Map1Normal.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       v[0] = ctx->EvalMap.Map1Texture1.u1;
	       v[1] = ctx->EvalMap.Map1Texture1.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       v[0] = ctx->EvalMap.Map1Texture2.u1;
	       v[1] = ctx->EvalMap.Map1Texture2.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       v[0] = ctx->EvalMap.Map1Texture3.u1;
	       v[1] = ctx->EvalMap.Map1Texture3.u2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       v[0] = ctx->EvalMap.Map1Texture4.u1;
	       v[1] = ctx->EvalMap.Map1Texture4.u2;
	       break;
	    case GL_MAP1_VERTEX_3:
	       v[0] = ctx->EvalMap.Map1Vertex3.u1;
	       v[1] = ctx->EvalMap.Map1Vertex3.u2;
	       break;
	    case GL_MAP1_VERTEX_4:
	       v[0] = ctx->EvalMap.Map1Vertex4.u1;
	       v[1] = ctx->EvalMap.Map1Vertex4.u2;
	       break;
	    case GL_MAP2_COLOR_4:
	       v[0] = ctx->EvalMap.Map2Color4.u1;
	       v[1] = ctx->EvalMap.Map2Color4.u2;
	       v[2] = ctx->EvalMap.Map2Color4.v1;
	       v[3] = ctx->EvalMap.Map2Color4.v2;
	       break;
	    case GL_MAP2_INDEX:
	       v[0] = ctx->EvalMap.Map2Index.u1;
	       v[1] = ctx->EvalMap.Map2Index.u2;
	       v[2] = ctx->EvalMap.Map2Index.v1;
	       v[3] = ctx->EvalMap.Map2Index.v2;
	       break;
	    case GL_MAP2_NORMAL:
	       v[0] = ctx->EvalMap.Map2Normal.u1;
	       v[1] = ctx->EvalMap.Map2Normal.u2;
	       v[2] = ctx->EvalMap.Map2Normal.v1;
	       v[3] = ctx->EvalMap.Map2Normal.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       v[0] = ctx->EvalMap.Map2Texture1.u1;
	       v[1] = ctx->EvalMap.Map2Texture1.u2;
	       v[2] = ctx->EvalMap.Map2Texture1.v1;
	       v[3] = ctx->EvalMap.Map2Texture1.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       v[0] = ctx->EvalMap.Map2Texture2.u1;
	       v[1] = ctx->EvalMap.Map2Texture2.u2;
	       v[2] = ctx->EvalMap.Map2Texture2.v1;
	       v[3] = ctx->EvalMap.Map2Texture2.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       v[0] = ctx->EvalMap.Map2Texture3.u1;
	       v[1] = ctx->EvalMap.Map2Texture3.u2;
	       v[2] = ctx->EvalMap.Map2Texture3.v1;
	       v[3] = ctx->EvalMap.Map2Texture3.v2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       v[0] = ctx->EvalMap.Map2Texture4.u1;
	       v[1] = ctx->EvalMap.Map2Texture4.u2;
	       v[2] = ctx->EvalMap.Map2Texture4.v1;
	       v[3] = ctx->EvalMap.Map2Texture4.v2;
	       break;
	    case GL_MAP2_VERTEX_3:
	       v[0] = ctx->EvalMap.Map2Vertex3.u1;
	       v[1] = ctx->EvalMap.Map2Vertex3.u2;
	       v[2] = ctx->EvalMap.Map2Vertex3.v1;
	       v[3] = ctx->EvalMap.Map2Vertex3.v2;
	       break;
	    case GL_MAP2_VERTEX_4:
	       v[0] = ctx->EvalMap.Map2Vertex4.u1;
	       v[1] = ctx->EvalMap.Map2Vertex4.u2;
	       v[2] = ctx->EvalMap.Map2Vertex4.v1;
	       v[3] = ctx->EvalMap.Map2Vertex4.v2;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
	 }
         break;
      default:
         gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
   }
}


1717
void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
jtg's avatar
jtg committed
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
{
   GLuint i, n;
   GLfloat *data;

   switch (query) {
      case GL_COEFF:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       data = ctx->EvalMap.Map1Color4.Points;
	       n = ctx->EvalMap.Map1Color4.Order * 4;
	       break;
	    case GL_MAP1_INDEX:
	       data = ctx->EvalMap.Map1Index.Points;
	       n = ctx->EvalMap.Map1Index.Order;
	       break;
	    case GL_MAP1_NORMAL:
	       data = ctx->EvalMap.Map1Normal.Points;
	       n = ctx->EvalMap.Map1Normal.Order * 3;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       data = ctx->EvalMap.Map1Texture1.Points;
	       n = ctx->EvalMap.Map1Texture1.Order * 1;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       data = ctx->EvalMap.Map1Texture2.Points;
	       n = ctx->EvalMap.Map1Texture2.Order * 2;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       data = ctx->EvalMap.Map1Texture3.Points;
	       n = ctx->EvalMap.Map1Texture3.Order * 3;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       data = ctx->EvalMap.Map1Texture4.Points;
	       n = ctx->EvalMap.Map1Texture4.Order * 4;
	       break;
	    case GL_MAP1_VERTEX_3:
	       data = ctx->EvalMap.Map1Vertex3.Points;
	       n = ctx->EvalMap.Map1Vertex3.Order * 3;
	       break;
	    case GL_MAP1_VERTEX_4:
	       data = ctx->EvalMap.Map1Vertex4.Points;
	       n = ctx->EvalMap.Map1Vertex4.Order * 4;
	       break;
	    case GL_MAP2_COLOR_4:
	       data = ctx->EvalMap.Map2Color4.Points;
	       n = ctx->EvalMap.Map2Color4.Uorder
                 * ctx->EvalMap.Map2Color4.Vorder * 4;
	       break;
	    case GL_MAP2_INDEX:
	       data = ctx->EvalMap.Map2Index.Points;
	       n = ctx->EvalMap.Map2Index.Uorder
                 * ctx->EvalMap.Map2Index.Vorder;
	       break;
	    case GL_MAP2_NORMAL:
	       data = ctx->EvalMap.Map2Normal.Points;
	       n = ctx->EvalMap.Map2Normal.Uorder
                 * ctx->EvalMap.Map2Normal.Vorder * 3;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       data = ctx->EvalMap.Map2Texture1.Points;
	       n = ctx->EvalMap.Map2Texture1.Uorder
                 * ctx->EvalMap.Map2Texture1.Vorder * 1;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       data = ctx->EvalMap.Map2Texture2.Points;
	       n = ctx->EvalMap.Map2Texture2.Uorder
                 * ctx->EvalMap.Map2Texture2.Vorder * 2;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       data = ctx->EvalMap.Map2Texture3.Points;
	       n = ctx->EvalMap.Map2Texture3.Uorder
                 * ctx->EvalMap.Map2Texture3.Vorder * 3;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       data = ctx->EvalMap.Map2Texture4.Points;
	       n = ctx->EvalMap.Map2Texture4.Uorder
                 * ctx->EvalMap.Map2Texture4.Vorder * 4;
	       break;
	    case GL_MAP2_VERTEX_3:
	       data = ctx->EvalMap.Map2Vertex3.Points;
	       n = ctx->EvalMap.Map2Vertex3.Uorder
                 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
	       break;
	    case GL_MAP2_VERTEX_4:
	       data = ctx->EvalMap.Map2Vertex4.Points;
	       n = ctx->EvalMap.Map2Vertex4.Uorder
                 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
	       return;
	 }
	 if (data) {
	    for (i=0;i<n;i++) {
	       v[i] = ROUNDF(data[i]);
	    }
	 }
         break;
      case GL_ORDER:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       *v = ctx->EvalMap.Map1Color4.Order;
	       break;
	    case GL_MAP1_INDEX:
	       *v = ctx->EvalMap.Map1Index.Order;
	       break;
	    case GL_MAP1_NORMAL:
	       *v = ctx->EvalMap.Map1Normal.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       *v = ctx->EvalMap.Map1Texture1.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       *v = ctx->EvalMap.Map1Texture2.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       *v = ctx->EvalMap.Map1Texture3.Order;
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       *v = ctx->EvalMap.Map1Texture4.Order;
	       break;
	    case GL_MAP1_VERTEX_3:
	       *v = ctx->EvalMap.Map1Vertex3.Order;
	       break;
	    case GL_MAP1_VERTEX_4:
	       *v = ctx->EvalMap.Map1Vertex4.Order;
	       break;
	    case GL_MAP2_COLOR_4:
	       v[0] = ctx->EvalMap.Map2Color4.Uorder;
	       v[1] = ctx->EvalMap.Map2Color4.Vorder;
	       break;
	    case GL_MAP2_INDEX:
	       v[0] = ctx->EvalMap.Map2Index.Uorder;
	       v[1] = ctx->EvalMap.Map2Index.Vorder;
	       break;
	    case GL_MAP2_NORMAL:
	       v[0] = ctx->EvalMap.Map2Normal.Uorder;
	       v[1] = ctx->EvalMap.Map2Normal.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_1:
	       v[0] = ctx->EvalMap.Map2Texture1.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture1.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_2:
	       v[0] = ctx->EvalMap.Map2Texture2.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture2.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_3:
	       v[0] = ctx->EvalMap.Map2Texture3.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture3.Vorder;
	       break;
	    case GL_MAP2_TEXTURE_COORD_4:
	       v[0] = ctx->EvalMap.Map2Texture4.Uorder;
	       v[1] = ctx->EvalMap.Map2Texture4.Vorder;
	       break;
	    case GL_MAP2_VERTEX_3:
	       v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
	       v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
	       break;
	    case GL_MAP2_VERTEX_4:
	       v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
	       v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
	       break;
	    default:
	       gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
	       return;
	 }
         break;
      case GL_DOMAIN:
	 switch (target) {
	    case GL_MAP1_COLOR_4:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
	       break;
	    case GL_MAP1_INDEX:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
	       break;
	    case GL_MAP1_NORMAL:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
	       break;
	    case GL_MAP1_TEXTURE_COORD_1:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
	       break;
	    case GL_MAP1_TEXTURE_COORD_2:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
	       break;
	    case GL_MAP1_TEXTURE_COORD_3:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
	       break;
	    case GL_MAP1_TEXTURE_COORD_4:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
	       break;
	    case GL_MAP1_VERTEX_3:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
	       break;
	    case GL_MAP1_VERTEX_4:
	       v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
	       v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
	       break;
	    case GL_MAP2_COLOR_4:
	       v[0] = ROUNDF(