diff --git a/include/linux/scs.h b/include/linux/scs.h
index 6dec390cf154b7b30f9799a3d1f620e18927eb94..2a506c2a16f4b33cb5e870348c3567fc8d788c60 100644
--- a/include/linux/scs.h
+++ b/include/linux/scs.h
@@ -15,12 +15,8 @@
 
 #ifdef CONFIG_SHADOW_CALL_STACK
 
-/*
- * In testing, 1 KiB shadow stack size (i.e. 128 stack frames on a 64-bit
- * architecture) provided ~40% safety margin on stack usage while keeping
- * memory allocation overhead reasonable.
- */
-#define SCS_SIZE		SZ_1K
+#define SCS_ORDER		0
+#define SCS_SIZE		(PAGE_SIZE << SCS_ORDER)
 #define GFP_SCS			(GFP_KERNEL | __GFP_ZERO)
 
 /* An illegal pointer value to mark the end of the shadow stack. */
@@ -33,6 +29,8 @@
 #define task_scs(tsk)		(task_thread_info(tsk)->scs_base)
 #define task_scs_sp(tsk)	(task_thread_info(tsk)->scs_sp)
 
+void *scs_alloc(int node);
+void scs_free(void *s);
 void scs_init(void);
 int scs_prepare(struct task_struct *tsk, int node);
 void scs_release(struct task_struct *tsk);
@@ -61,6 +59,8 @@ static inline bool task_scs_end_corrupted(struct task_struct *tsk)
 
 #else /* CONFIG_SHADOW_CALL_STACK */
 
+static inline void *scs_alloc(int node) { return NULL; }
+static inline void scs_free(void *s) {}
 static inline void scs_init(void) {}
 static inline void scs_task_reset(struct task_struct *tsk) {}
 static inline int scs_prepare(struct task_struct *tsk, int node) { return 0; }
diff --git a/kernel/scs.c b/kernel/scs.c
index 4ff4a7ba0094f737e7730e1fcfc02b00fbcfb4fb..e2a71fc82fa0686c48bb62f7d559e47445096237 100644
--- a/kernel/scs.c
+++ b/kernel/scs.c
@@ -5,26 +5,49 @@
  * Copyright (C) 2019 Google LLC
  */
 
+#include <linux/cpuhotplug.h>
 #include <linux/kasan.h>
 #include <linux/mm.h>
 #include <linux/scs.h>
-#include <linux/slab.h>
+#include <linux/vmalloc.h>
 #include <linux/vmstat.h>
 
-static struct kmem_cache *scs_cache;
-
 static void __scs_account(void *s, int account)
 {
-	struct page *scs_page = virt_to_page(s);
+	struct page *scs_page = vmalloc_to_page(s);
 
 	mod_node_page_state(page_pgdat(scs_page), NR_KERNEL_SCS_KB,
 			    account * (SCS_SIZE / SZ_1K));
 }
 
-static void *scs_alloc(int node)
+/* Matches NR_CACHED_STACKS for VMAP_STACK */
+#define NR_CACHED_SCS 2
+static DEFINE_PER_CPU(void *, scs_cache[NR_CACHED_SCS]);
+
+static void *__scs_alloc(int node)
 {
-	void *s = kmem_cache_alloc_node(scs_cache, GFP_SCS, node);
+	int i;
+	void *s;
+
+	for (i = 0; i < NR_CACHED_SCS; i++) {
+		s = this_cpu_xchg(scs_cache[i], NULL);
+		if (s) {
+			kasan_unpoison_vmalloc(s, SCS_SIZE);
+			memset(s, 0, SCS_SIZE);
+			return s;
+		}
+	}
+
+	return __vmalloc_node_range(SCS_SIZE, 1, VMALLOC_START, VMALLOC_END,
+				    GFP_SCS, PAGE_KERNEL, 0, node,
+				    __builtin_return_address(0));
+}
 
+void *scs_alloc(int node)
+{
+	void *s;
+
+	s = __scs_alloc(node);
 	if (!s)
 		return NULL;
 
@@ -34,21 +57,47 @@ static void *scs_alloc(int node)
 	 * Poison the allocation to catch unintentional accesses to
 	 * the shadow stack when KASAN is enabled.
 	 */
-	kasan_poison_object_data(scs_cache, s);
+	kasan_poison_vmalloc(s, SCS_SIZE);
 	__scs_account(s, 1);
 	return s;
 }
 
-static void scs_free(void *s)
+void scs_free(void *s)
 {
+	int i;
+
 	__scs_account(s, -1);
-	kasan_unpoison_object_data(scs_cache, s);
-	kmem_cache_free(scs_cache, s);
+
+	/*
+	 * We cannot sleep as this can be called in interrupt context,
+	 * so use this_cpu_cmpxchg to update the cache, and vfree_atomic
+	 * to free the stack.
+	 */
+
+	for (i = 0; i < NR_CACHED_SCS; i++)
+		if (this_cpu_cmpxchg(scs_cache[i], 0, s) == NULL)
+			return;
+
+	vfree_atomic(s);
+}
+
+static int scs_cleanup(unsigned int cpu)
+{
+	int i;
+	void **cache = per_cpu_ptr(scs_cache, cpu);
+
+	for (i = 0; i < NR_CACHED_SCS; i++) {
+		vfree(cache[i]);
+		cache[i] = NULL;
+	}
+
+	return 0;
 }
 
 void __init scs_init(void)
 {
-	scs_cache = kmem_cache_create("scs_cache", SCS_SIZE, 0, 0, NULL);
+	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "scs:scs_cache", NULL,
+			  scs_cleanup);
 }
 
 int scs_prepare(struct task_struct *tsk, int node)