nm-core-utils.c 130 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */
/* NetworkManager -- Network link manager
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Copyright 2004 - 2014 Red Hat, Inc.
 * Copyright 2005 - 2008 Novell, Inc.
 */

#include "nm-default.h"

#include "nm-core-utils.h"

#include <errno.h>
#include <fcntl.h>
#include <string.h>
29
#include <poll.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include <unistd.h>
#include <stdlib.h>
#include <resolv.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <linux/if.h>
#include <linux/if_infiniband.h>
#include <net/ethernet.h>

#include "nm-utils.h"
#include "nm-core-internal.h"
#include "nm-setting-connection.h"
#include "nm-setting-ip4-config.h"
#include "nm-setting-ip6-config.h"
#include "nm-setting-wireless.h"
#include "nm-setting-wireless-security.h"

/*
 * Some toolchains (E.G. uClibc 0.9.33 and earlier) don't export
 * CLOCK_BOOTTIME even though the kernel supports it, so provide a
 * local definition
 */
#ifndef CLOCK_BOOTTIME
#define CLOCK_BOOTTIME 7
#endif

G_STATIC_ASSERT (sizeof (NMUtilsTestFlags) <= sizeof (int));
58
static int _nm_utils_testing = 0;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

gboolean
nm_utils_get_testing_initialized ()
{
	NMUtilsTestFlags flags;

	flags = (NMUtilsTestFlags) _nm_utils_testing;
	if (flags == NM_UTILS_TEST_NONE)
		flags = (NMUtilsTestFlags) g_atomic_int_get (&_nm_utils_testing);
	return flags != NM_UTILS_TEST_NONE;
}

NMUtilsTestFlags
nm_utils_get_testing ()
{
	NMUtilsTestFlags flags;

	flags = (NMUtilsTestFlags) _nm_utils_testing;
	if (flags != NM_UTILS_TEST_NONE) {
		/* Flags already initialized. Return them. */
		return flags & NM_UTILS_TEST_ALL;
	}

	/* Accessing nm_utils_get_testing() causes us to set the flags to initialized.
	 * Detecting running tests also based on g_test_initialized(). */
	flags = _NM_UTILS_TEST_INITIALIZED;
	if (g_test_initialized ())
		flags |= _NM_UTILS_TEST_GENERAL;

	if (g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) {
		/* Done. We set it. */
		return flags & NM_UTILS_TEST_ALL;
	}
	/* It changed in the meantime (??). Re-read the value. */
	return ((NMUtilsTestFlags) _nm_utils_testing) & NM_UTILS_TEST_ALL;
}

void
_nm_utils_set_testing (NMUtilsTestFlags flags)
{
	g_assert (!NM_FLAGS_ANY (flags, ~NM_UTILS_TEST_ALL));

	/* mask out everything except ALL, and always set GENERAL. */
	flags = (flags & NM_UTILS_TEST_ALL) | (_NM_UTILS_TEST_GENERAL | _NM_UTILS_TEST_INITIALIZED);

	if (!g_atomic_int_compare_and_exchange (&_nm_utils_testing, 0, (int) flags)) {
		/* We only allow setting _nm_utils_set_testing() once, before fetching the
		 * value with nm_utils_get_testing(). */
		g_return_if_reached ();
	}
}

/*****************************************************************************/

113 114 115 116
const NMIPAddr nm_ip_addr_zero = NMIPAddrInit;

/*****************************************************************************/

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static GSList *_singletons = NULL;
static gboolean _singletons_shutdown = FALSE;

static void
_nm_singleton_instance_weak_cb (gpointer data,
                                GObject *where_the_object_was)
{
	_singletons = g_slist_remove (_singletons, where_the_object_was);
}

static void __attribute__((destructor))
_nm_singleton_instance_destroy (void)
{
	_singletons_shutdown = TRUE;

	while (_singletons) {
		GObject *instance = _singletons->data;

		_singletons = g_slist_delete_link (_singletons, _singletons);

		g_object_weak_unref (instance, _nm_singleton_instance_weak_cb, NULL);

		if (instance->ref_count > 1)
			nm_log_dbg (LOGD_CORE, "disown %s singleton (%p)", G_OBJECT_TYPE_NAME (instance), instance);

		g_object_unref (instance);
	}
}

void
_nm_singleton_instance_register_destruction (GObject *instance)
{
	g_return_if_fail (G_IS_OBJECT (instance));

	/* Don't allow registration after shutdown. We only destroy the singletons
	 * once. */
	g_return_if_fail (!_singletons_shutdown);

	g_object_weak_ref (instance, _nm_singleton_instance_weak_cb, NULL);

	_singletons = g_slist_prepend (_singletons, instance);
}

/*****************************************************************************/

162
static double
163
_exp10 (guint16 ex)
164 165 166 167 168 169
{
	double v;

	if (ex == 0)
		return 1.0;

170
	v = _exp10 (ex / 2);
171 172 173 174 175 176
	v = v * v;
	if (ex % 2)
		v *= 10;
	return v;
}

177
/*
178
 * nm_utils_exp10:
179 180
 * @ex: the exponent
 *
181
 * Returns: 10^ex, or pow(10, ex), or exp10(ex).
182 183
 */
double
184
nm_utils_exp10 (gint16 ex)
185 186
{
	if (ex >= 0)
187 188
		return _exp10 (ex);
	return 1.0 / _exp10 (- ((gint32) ex));
189 190 191 192
}

/*****************************************************************************/

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * nm_ethernet_address_is_valid:
 * @addr: pointer to a binary or ASCII Ethernet address
 * @len: length of @addr, or -1 if @addr is ASCII
 *
 * Compares an Ethernet address against known invalid addresses.

 * Returns: %TRUE if @addr is a valid Ethernet address, %FALSE if it is not.
 */
gboolean
nm_ethernet_address_is_valid (gconstpointer addr, gssize len)
{
	guint8 invalid_addr[4][ETH_ALEN] = {
	    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
	    {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
	    {0x44, 0x44, 0x44, 0x44, 0x44, 0x44},
	    {0x00, 0x30, 0xb4, 0x00, 0x00, 0x00}, /* prism54 dummy MAC */
	};
	guint8 addr_bin[ETH_ALEN];
	guint i;

	if (!addr) {
		g_return_val_if_fail (len == -1 || len == ETH_ALEN, FALSE);
		return FALSE;
	}

	if (len == -1) {
		if (!nm_utils_hwaddr_aton (addr, addr_bin, ETH_ALEN))
			return FALSE;
		addr = addr_bin;
	} else if (len != ETH_ALEN)
		g_return_val_if_reached (FALSE);

	/* Check for multicast address */
	if ((((guint8 *) addr)[0]) & 0x01)
		return FALSE;

	for (i = 0; i < G_N_ELEMENTS (invalid_addr); i++) {
		if (nm_utils_hwaddr_matches (addr, ETH_ALEN, invalid_addr[i], ETH_ALEN))
			return FALSE;
	}

	return TRUE;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
gconstpointer
nm_utils_ipx_address_clear_host_address (int family, gpointer dst, gconstpointer src, guint8 plen)
{
	g_return_val_if_fail (src, NULL);
	g_return_val_if_fail (dst, NULL);

	switch (family) {
	case AF_INET:
		g_return_val_if_fail (plen <= 32, NULL);
		*((guint32 *) dst) = nm_utils_ip4_address_clear_host_address (*((guint32 *) src), plen);
		break;
	case AF_INET6:
		g_return_val_if_fail (plen <= 128, NULL);
		nm_utils_ip6_address_clear_host_address (dst, src, plen);
		break;
	default:
		g_return_val_if_reached (NULL);
	}
	return dst;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/* nm_utils_ip4_address_clear_host_address:
 * @addr: source ip6 address
 * @plen: prefix length of network
 *
 * returns: the input address, with the host address set to 0.
 */
in_addr_t
nm_utils_ip4_address_clear_host_address (in_addr_t addr, guint8 plen)
{
	return addr & nm_utils_ip4_prefix_to_netmask (plen);
}

/* nm_utils_ip6_address_clear_host_address:
 * @dst: destination output buffer, will contain the network part of the @src address
 * @src: source ip6 address
 * @plen: prefix length of network
 *
 * Note: this function is self assignment safe, to update @src inplace, set both
 * @dst and @src to the same destination.
 */
const struct in6_addr *
nm_utils_ip6_address_clear_host_address (struct in6_addr *dst, const struct in6_addr *src, guint8 plen)
{
	g_return_val_if_fail (plen <= 128, NULL);
	g_return_val_if_fail (src, NULL);
	g_return_val_if_fail (dst, NULL);

	if (plen < 128) {
		guint nbytes = plen / 8;
		guint nbits = plen % 8;

		if (nbytes && dst != src)
			memcpy (dst, src, nbytes);
		if (nbits) {
			dst->s6_addr[nbytes] = (src->s6_addr[nbytes] & (0xFF << (8 - nbits)));
			nbytes++;
		}
		if (nbytes <= 15)
			memset (&dst->s6_addr[nbytes], 0, 16 - nbytes);
	} else if (src != dst)
		*dst = *src;

	return dst;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
gboolean
nm_utils_ip6_address_same_prefix (const struct in6_addr *addr_a, const struct in6_addr *addr_b, guint8 plen)
{
	int nbytes;
	guint8 t, m;

	if (plen >= 128)
		return memcmp (addr_a, addr_b, sizeof (struct in6_addr)) == 0;

	nbytes = plen / 8;
	if (nbytes) {
		if (memcmp (addr_a, addr_b, nbytes) != 0)
			return FALSE;
	}

	plen = plen % 8;
	if (plen == 0)
		return TRUE;

	m = ~((1 << (8 - plen)) - 1);
	t = ((((const guint8 *) addr_a))[nbytes]) ^ ((((const guint8 *) addr_b))[nbytes]);
	return (t & m) == 0;
}

/*****************************************************************************/

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void
nm_utils_array_remove_at_indexes (GArray *array, const guint *indexes_to_delete, gsize len)
{
	gsize elt_size;
	guint index_to_delete;
	guint i_src;
	guint mm_src, mm_dst, mm_len;
	gsize i_itd;
	guint res_length;

	g_return_if_fail (array);
	if (!len)
		return;
	g_return_if_fail (indexes_to_delete);

	elt_size = g_array_get_element_size (array);

	i_itd = 0;
	index_to_delete = indexes_to_delete[0];
	if (index_to_delete >= array->len)
		g_return_if_reached ();

	res_length = array->len - 1;

	mm_dst = index_to_delete;
	mm_src = index_to_delete;
	mm_len = 0;

	for (i_src = index_to_delete; i_src < array->len; i_src++) {
		if (i_src < index_to_delete)
			mm_len++;
		else {
			/* we require indexes_to_delete to contain non-repeated, ascending
			 * indexes. Otherwise we would need to presort the indexes. */
			while (TRUE) {
				guint dd;

				if (i_itd + 1 >= len) {
					index_to_delete = G_MAXUINT;
					break;
				}

				dd = indexes_to_delete[++i_itd];
				if (dd > index_to_delete) {
					if (dd >= array->len)
						g_warn_if_reached ();
					else {
						g_assert (res_length > 0);
						res_length--;
					}
					index_to_delete = dd;
					break;
				}
				g_warn_if_reached ();
			}

			if (mm_len) {
				memmove (&array->data[mm_dst * elt_size],
				         &array->data[mm_src * elt_size],
				         mm_len * elt_size);
				mm_dst += mm_len;
				mm_src += mm_len + 1;
				mm_len = 0;
			} else
				mm_src++;
		}
	}
	if (mm_len) {
		memmove (&array->data[mm_dst * elt_size],
		         &array->data[mm_src * elt_size],
		         mm_len * elt_size);
	}
	g_array_set_size (array, res_length);
}

static const char *
_trunk_first_line (char *str)
{
	char *s;

	s = strchr (str, '\n');
	if (s)
		s[0] = '\0';
	return str;
}

int
nm_utils_modprobe (GError **error, gboolean suppress_error_logging, const char *arg1, ...)
{
	gs_unref_ptrarray GPtrArray *argv = NULL;
	int exit_status;
	gs_free char *_log_str = NULL;
#define ARGV_TO_STR(argv)   (_log_str ? _log_str : (_log_str = g_strjoinv (" ", (char **) argv->pdata)))
	GError *local = NULL;
	va_list ap;
	NMLogLevel llevel = suppress_error_logging ? LOGL_DEBUG : LOGL_ERR;
	gs_free char *std_out = NULL, *std_err = NULL;

	g_return_val_if_fail (!error || !*error, -1);
	g_return_val_if_fail (arg1, -1);

	/* construct the argument list */
	argv = g_ptr_array_sized_new (4);
	g_ptr_array_add (argv, "/sbin/modprobe");
	g_ptr_array_add (argv, (char *) arg1);

	va_start (ap, arg1);
	while ((arg1 = va_arg (ap, const char *)))
		g_ptr_array_add (argv, (char *) arg1);
	va_end (ap);

	g_ptr_array_add (argv, NULL);

	nm_log_dbg (LOGD_CORE, "modprobe: '%s'", ARGV_TO_STR (argv));
	if (!g_spawn_sync (NULL, (char **) argv->pdata, NULL, 0, NULL, NULL, &std_out, &std_err, &exit_status, &local)) {
445
		nm_log (llevel, LOGD_CORE, NULL, NULL, "modprobe: '%s' failed: %s", ARGV_TO_STR (argv), local->message);
446 447
		g_propagate_error (error, local);
		return -1;
448
	} else if (exit_status != 0) {
449
		nm_log (llevel, LOGD_CORE, NULL, NULL, "modprobe: '%s' exited with error %d%s%s%s%s%s%s", ARGV_TO_STR (argv), exit_status,
450 451
		        std_out&&*std_out ? " (" : "", std_out&&*std_out ? _trunk_first_line (std_out) : "", std_out&&*std_out ? ")" : "",
		        std_err&&*std_err ? " (" : "", std_err&&*std_err ? _trunk_first_line (std_err) : "", std_err&&*std_err ? ")" : "");
452
	}
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	return exit_status;
}

/**
 * nm_utils_get_start_time_for_pid:
 * @pid: the process identifier
 * @out_state: return the state character, like R, S, Z. See `man 5 proc`.
 * @out_ppid: parent process id
 *
 * Originally copied from polkit source (src/polkit/polkitunixprocess.c)
 * and adjusted.
 *
 * Returns: the timestamp when the process started (by parsing /proc/$PID/stat).
 * If an error occurs (e.g. the process does not exist), 0 is returned.
 *
 * The returned start time counts since boot, in the unit HZ (with HZ usually being (1/100) seconds)
 **/
guint64
nm_utils_get_start_time_for_pid (pid_t pid, char *out_state, pid_t *out_ppid)
{
	guint64 start_time;
	char filename[256];
	gs_free gchar *contents = NULL;
	size_t length;
	gs_strfreev gchar **tokens = NULL;
	guint num_tokens;
	gchar *p;
481
	char state = ' ';
482 483 484 485 486 487 488 489 490 491
	gint64 ppid = 0;

	start_time = 0;
	contents = NULL;

	g_return_val_if_fail (pid > 0, 0);

	nm_sprintf_buf (filename, "/proc/%"G_GUINT64_FORMAT"/stat", (guint64) pid);

	if (!g_file_get_contents (filename, &contents, &length, NULL))
492
		goto fail;
493 494 495 496 497 498 499

	/* start time is the token at index 19 after the '(process name)' entry - since only this
	 * field can contain the ')' character, search backwards for this to avoid malicious
	 * processes trying to fool us
	 */
	p = strrchr (contents, ')');
	if (p == NULL)
500
		goto fail;
501 502
	p += 2; /* skip ') ' */
	if (p - contents >= (int) length)
503
		goto fail;
504 505 506 507 508 509 510 511

	state = p[0];

	tokens = g_strsplit (p, " ", 0);

	num_tokens = g_strv_length (tokens);

	if (num_tokens < 20)
512
		goto fail;
513

514
	if (out_ppid) {
515
		ppid = _nm_utils_ascii_str_to_int64 (tokens[1], 10, 1, G_MAXINT, 0);
516 517 518
		if (ppid == 0)
			goto fail;
	}
519

520 521 522
	start_time = _nm_utils_ascii_str_to_int64 (tokens[19], 10, 1, G_MAXINT64, 0);
	if (start_time == 0)
		goto fail;
523

524 525
	NM_SET_OUT (out_state, state);
	NM_SET_OUT (out_ppid, ppid);
526
	return start_time;
527 528 529 530 531

fail:
	NM_SET_OUT (out_state, ' ');
	NM_SET_OUT (out_ppid, 0);
	return 0;
532 533
}

534
/*****************************************************************************/
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

typedef struct {
	pid_t pid;
	NMLogDomain log_domain;
	union {
		struct {
			gint64 wait_start_us;
			guint source_timeout_kill_id;
		} async;
		struct {
			gboolean success;
			int child_status;
		} sync;
	};
	NMUtilsKillChildAsyncCb callback;
	void *user_data;

	char log_name[1]; /* variable-length object, must be last element!! */
} KillChildAsyncData;

#define LOG_NAME_FMT "kill child process '%s' (%ld)"
#define LOG_NAME_PROCESS_FMT "kill process '%s' (%ld)"
#define LOG_NAME_ARGS log_name,(long)pid

static KillChildAsyncData *
_kc_async_data_alloc (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data)
{
	KillChildAsyncData *data;
	size_t log_name_len;

	/* append the name at the end of our KillChildAsyncData. */
	log_name_len = strlen (LOG_NAME_FMT) + 20 + strlen (log_name);
	data = g_malloc (sizeof (KillChildAsyncData) - 1 + log_name_len);
	g_snprintf (data->log_name, log_name_len, LOG_NAME_FMT, LOG_NAME_ARGS);

	data->pid = pid;
	data->user_data = user_data;
	data->callback = callback;
	data->log_domain = log_domain;

	return data;
}

#define KC_EXIT_TO_STRING_BUF_SIZE 128
static const char *
_kc_exit_to_string (char *buf, int exit)
#define _kc_exit_to_string(buf, exit) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_EXIT_TO_STRING_BUF_SIZE && sizeof ((buf)[0]) == 1), _kc_exit_to_string (buf, exit) )
{
	if (WIFEXITED (exit))
		g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "normally with status %d", WEXITSTATUS (exit));
	else if (WIFSIGNALED (exit))
		g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "by signal %d", WTERMSIG (exit));
	else
		g_snprintf (buf, KC_EXIT_TO_STRING_BUF_SIZE, "with unexpected status %d", exit);
	return buf;
}

static const char *
_kc_signal_to_string (int sig)
{
	switch (sig) {
	case 0:  return "no signal (0)";
	case SIGKILL:  return "SIGKILL (" G_STRINGIFY (SIGKILL) ")";
	case SIGTERM:  return "SIGTERM (" G_STRINGIFY (SIGTERM) ")";
	default:
		return "Unexpected signal";
	}
}

#define KC_WAITED_TO_STRING 100
static const char *
_kc_waited_to_string (char *buf, gint64 wait_start_us)
#define _kc_waited_to_string(buf, wait_start_us) ( G_STATIC_ASSERT_EXPR(sizeof (buf) == KC_WAITED_TO_STRING && sizeof ((buf)[0]) == 1), _kc_waited_to_string (buf, wait_start_us) )
{
	g_snprintf (buf, KC_WAITED_TO_STRING, " (%ld usec elapsed)", (long) (nm_utils_get_monotonic_timestamp_us () - wait_start_us));
	return buf;
}

static void
_kc_cb_watch_child (GPid pid, gint status, gpointer user_data)
{
	KillChildAsyncData *data = user_data;
	char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE], buf_wait[KC_WAITED_TO_STRING];

	if (data->async.source_timeout_kill_id)
		g_source_remove (data->async.source_timeout_kill_id);

	nm_log_dbg (data->log_domain, "%s: terminated %s%s",
	            data->log_name, _kc_exit_to_string (buf_exit, status),
	            _kc_waited_to_string (buf_wait, data->async.wait_start_us));

	if (data->callback)
		data->callback (pid, TRUE, status, data->user_data);

	g_free (data);
}

static gboolean
_kc_cb_timeout_grace_period (void *user_data)
{
	KillChildAsyncData *data = user_data;
	int ret, errsv;

	data->async.source_timeout_kill_id = 0;

	if ((ret = kill (data->pid, SIGKILL)) != 0) {
		errsv = errno;
		/* ESRCH means, process does not exist or is already a zombie. */
		if (errsv != ESRCH) {
			nm_log_err (LOGD_CORE | data->log_domain, "%s: kill(SIGKILL) returned unexpected return value %d: (%s, %d)",
			            data->log_name, ret, strerror (errsv), errsv);
		}
	} else {
		nm_log_dbg (data->log_domain, "%s: process not terminated after %ld usec. Sending SIGKILL signal",
		            data->log_name, (long) (nm_utils_get_monotonic_timestamp_us () - data->async.wait_start_us));
	}

	return G_SOURCE_REMOVE;
}

static gboolean
_kc_invoke_callback_idle (gpointer user_data)
{
	KillChildAsyncData *data = user_data;

	if (data->sync.success) {
		char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];

		nm_log_dbg (data->log_domain, "%s: invoke callback: terminated %s",
		            data->log_name, _kc_exit_to_string (buf_exit, data->sync.child_status));
	} else
		nm_log_dbg (data->log_domain, "%s: invoke callback: killing child failed", data->log_name);

	data->callback (data->pid, data->sync.success, data->sync.child_status, data->user_data);
	g_free (data);

	return G_SOURCE_REMOVE;
}

static void
_kc_invoke_callback (pid_t pid, NMLogDomain log_domain, const char *log_name, NMUtilsKillChildAsyncCb callback, void *user_data, gboolean success, int child_status)
{
	KillChildAsyncData *data;

	if (!callback)
		return;

	data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
	data->sync.success = success;
	data->sync.child_status = child_status;

	g_idle_add (_kc_invoke_callback_idle, data);
}

/* nm_utils_kill_child_async:
 * @pid: the process id of the process to kill
 * @sig: signal to send initially. Set to 0 to send not signal.
 * @log_domain: the logging domain used for logging (LOGD_NONE to suppress logging)
 * @log_name: for logging, the name of the processes to kill
 * @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
 * to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter is ignored.
 * @callback: (allow-none): callback after the child terminated. This function will always
 *   be invoked asynchronously.
 * @user_data: passed on to callback
 *
 * Uses g_child_watch_add(), so note the glib comment: if you obtain pid from g_spawn_async() or
 * g_spawn_async_with_pipes() you will need to pass %G_SPAWN_DO_NOT_REAP_CHILD as flag to the spawn
 * function for the child watching to work.
 * Also note, that you must g_source_remove() any other child watchers for @pid because glib
 * supports only one watcher per child.
 **/
void
nm_utils_kill_child_async (pid_t pid, int sig, NMLogDomain log_domain,
                           const char *log_name, guint32 wait_before_kill_msec,
                           NMUtilsKillChildAsyncCb callback, void *user_data)
{
	int status = 0, errsv;
	pid_t ret;
	KillChildAsyncData *data;
	char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];

	g_return_if_fail (pid > 0);
	g_return_if_fail (log_name != NULL);

	/* let's see if the child already terminated... */
	ret = waitpid (pid, &status, WNOHANG);
	if (ret > 0) {
		nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
		            LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
		_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
		return;
	} else if (ret != 0) {
		errsv = errno;
		/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
		if (errsv != ECHILD) {
			nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
			            LOG_NAME_ARGS, strerror (errsv), errsv);
			_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
			return;
		}
	}

	/* send the first signal. */
	if (kill (pid, sig) != 0) {
		errsv = errno;
		/* ESRCH means, process does not exist or is already a zombie. */
		if (errsv != ESRCH) {
			nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error sending %s: %s (%d)",
			            LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
			_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
			return;
		}

		/* let's try again with waitpid, probably there was a race... */
		ret = waitpid (pid, &status, 0);
		if (ret > 0) {
			nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
			            LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
			_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, TRUE, status);
		} else {
			errsv = errno;
			nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
			            LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
			_kc_invoke_callback (pid, log_domain, log_name, callback, user_data, FALSE, -1);
		}
		return;
	}

	data = _kc_async_data_alloc (pid, log_domain, log_name, callback, user_data);
	data->async.wait_start_us = nm_utils_get_monotonic_timestamp_us ();

	if (sig != SIGKILL && wait_before_kill_msec > 0) {
		data->async.source_timeout_kill_id = g_timeout_add (wait_before_kill_msec, _kc_cb_timeout_grace_period, data);
		nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s (send SIGKILL in %ld milliseconds)...",
		            data->log_name,  _kc_signal_to_string (sig), (long) wait_before_kill_msec);
	} else {
		data->async.source_timeout_kill_id = 0;
		nm_log_dbg (log_domain, "%s: wait for process to terminate after sending %s...",
		            data->log_name, _kc_signal_to_string (sig));
	}

	g_child_watch_add (pid, _kc_cb_watch_child, data);
}

static inline gulong
_sleep_duration_convert_ms_to_us (guint32 sleep_duration_msec)
{
	if (sleep_duration_msec > 0) {
		guint64 x = (gint64) sleep_duration_msec * (guint64) 1000L;

		return x < G_MAXULONG ? (gulong) x : G_MAXULONG;
	}
	return G_USEC_PER_SEC / 20;
}

/* nm_utils_kill_child_sync:
 * @pid: process id to kill
 * @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
 * second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
 * @log_domain: log debug information for this domain. Errors and warnings are logged both
 * as %LOGD_CORE and @log_domain.
 * @log_name: name of the process to kill for logging.
 * @child_status: (out) (allow-none): return the exit status of the child, if no error occured.
 * @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
 * to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has not effect.
 * @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
 * Set to zero, to use the default (meaning 20 wakeups per seconds).
 *
 * Kill a child process synchronously and wait. The function first checks if the child already terminated
 * and if it did, return the exit status. Otherwise send one @sig signal. @sig  will always be
 * sent unless the child already exited. If the child does not exit within @wait_before_kill_msec milliseconds,
 * the function will send %SIGKILL and waits for the child indefinitly. If @wait_before_kill_msec is zero, no
 * %SIGKILL signal will be sent.
 *
 * In case of error, errno is preserved to contain the last reason of failure.
 **/
gboolean
nm_utils_kill_child_sync (pid_t pid, int sig, NMLogDomain log_domain, const char *log_name,
                          int *child_status, guint32 wait_before_kill_msec,
                          guint32 sleep_duration_msec)
{
	int status = 0, errsv = 0;
	pid_t ret;
	gboolean success = FALSE;
	gboolean was_waiting = FALSE, send_kill = FALSE;
	char buf_exit[KC_EXIT_TO_STRING_BUF_SIZE];
	char buf_wait[KC_WAITED_TO_STRING];
	gint64 wait_start_us;

	g_return_val_if_fail (pid > 0, FALSE);
	g_return_val_if_fail (log_name != NULL, FALSE);

	/* check if the child process already terminated... */
	ret = waitpid (pid, &status, WNOHANG);
	if (ret > 0) {
		nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
		            LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
		success = TRUE;
		goto out;
	} else if (ret != 0) {
		errsv = errno;
		/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
		if (errsv != ECHILD) {
			nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": unexpected error while waitpid: %s (%d)",
			            LOG_NAME_ARGS, strerror (errsv), errsv);
			goto out;
		}
	}

	/* send first signal @sig */
	if (kill (pid, sig) != 0) {
		errsv = errno;
		/* ESRCH means, process does not exist or is already a zombie. */
		if (errsv != ESRCH) {
			nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send %s: %s (%d)",
			            LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
		} else {
			/* let's try again with waitpid, probably there was a race... */
			ret = waitpid (pid, &status, 0);
			if (ret > 0) {
				nm_log_dbg (log_domain, LOG_NAME_FMT ": process %ld already terminated %s",
				            LOG_NAME_ARGS, (long) ret, _kc_exit_to_string (buf_exit, status));
				success = TRUE;
			} else {
				errsv = errno;
				nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed due to unexpected return value %ld by waitpid (%s, %d) after sending %s",
				            LOG_NAME_ARGS, (long) ret, strerror (errsv), errsv, _kc_signal_to_string (sig));
			}
		}
		goto out;
	}

	wait_start_us = nm_utils_get_monotonic_timestamp_us ();

	/* wait for the process to terminated... */
	if (sig != SIGKILL) {
		gint64 wait_until, now;
		gulong sleep_time, sleep_duration_usec;
		int loop_count = 0;

		sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec);
		wait_until = wait_before_kill_msec <= 0 ? 0 : wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);

		while (TRUE) {
			ret = waitpid (pid, &status, WNOHANG);
			if (ret > 0) {
				nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s, process %ld exited %s%s",
				            LOG_NAME_ARGS, _kc_signal_to_string (sig), (long) ret, _kc_exit_to_string (buf_exit, status),
				            was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
				success = TRUE;
				goto out;
			}
			if (ret == -1) {
				errsv = errno;
				/* ECHILD means, the process is not a child/does not exist or it has SIGCHILD blocked. */
				if (errsv != ECHILD) {
					nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s, waitpid failed with %s (%d)%s",
					            LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
					           was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
					goto out;
				}
			}

			if (!wait_until)
				break;

			now = nm_utils_get_monotonic_timestamp_us ();
			if (now >= wait_until)
				break;

			if (!was_waiting) {
				nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting up to %ld milliseconds for process to terminate normally after sending %s...",
				            LOG_NAME_ARGS, (long) MAX (wait_before_kill_msec, 0), _kc_signal_to_string (sig));
				was_waiting = TRUE;
			}

			sleep_time = MIN (wait_until - now, sleep_duration_usec);
			if (loop_count < 20) {
				/* At the beginning we expect the process to die fast.
				 * Limit the sleep time, the limit doubles with every iteration. */
				sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
				loop_count++;
			}
			g_usleep (sleep_time);
		}

		/* send SIGKILL, if called with @wait_before_kill_msec > 0 */
		if (wait_until) {
			nm_log_dbg (log_domain, LOG_NAME_FMT ": sending SIGKILL...", LOG_NAME_ARGS);

			send_kill = TRUE;
			if (kill (pid, SIGKILL) != 0) {
				errsv = errno;
				/* ESRCH means, process does not exist or is already a zombie. */
				if (errsv != ESRCH) {
					nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": failed to send SIGKILL (after sending %s), %s (%d)",
								LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
					goto out;
				}
			}
		}
	}

	if (!was_waiting) {
		nm_log_dbg (log_domain, LOG_NAME_FMT ": waiting for process to terminate after sending %s%s...",
		            LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "");
	}

	/* block until the child terminates. */
	while ((ret = waitpid (pid, &status, 0)) <= 0) {
		errsv = errno;

		if (errsv != EINTR) {
			nm_log_err (LOGD_CORE | log_domain, LOG_NAME_FMT ": after sending %s%s, waitpid failed with %s (%d)%s",
			            LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", strerror (errsv), errsv,
			            _kc_waited_to_string (buf_wait, wait_start_us));
			goto out;
		}
	}

	nm_log_dbg (log_domain, LOG_NAME_FMT ": after sending %s%s, process %ld exited %s%s",
	            LOG_NAME_ARGS, _kc_signal_to_string (sig), send_kill ? " and SIGKILL" : "", (long) ret,
	            _kc_exit_to_string (buf_exit, status), _kc_waited_to_string (buf_wait, wait_start_us));
	success = TRUE;
out:
	if (child_status)
		*child_status = success ? status : -1;
	errno = success ? 0 : errsv;
	return success;
}

/* nm_utils_kill_process_sync:
 * @pid: process id to kill
 * @start_time: the start time of the process to kill (as obtained by nm_utils_get_start_time_for_pid()).
 *   This is an optional argument, to avoid (somewhat) killing the wrong process as @pid
 *   might get recycled. You can pass 0, to not provide this parameter.
 * @sig: signal to sent initially. If 0, no signal is sent. If %SIGKILL, the
 *   second %SIGKILL signal is not sent after @wait_before_kill_msec milliseconds.
 * @log_domain: log debug information for this domain. Errors and warnings are logged both
 *   as %LOGD_CORE and @log_domain.
 * @log_name: name of the process to kill for logging.
 * @wait_before_kill_msec: Waittime in milliseconds before sending %SIGKILL signal. Set this value
 *   to zero, not to send %SIGKILL. If @sig is already %SIGKILL, this parameter has no effect.
 *   If @max_wait_msec is set but less then @wait_before_kill_msec, the final %SIGKILL will also
 *   not be send.
 * @sleep_duration_msec: the synchronous function sleeps repeatedly waiting for the child to terminate.
 *   Set to zero, to use the default (meaning 20 wakeups per seconds).
 * @max_wait_msec: if 0, waits indefinitely until the process is gone (or a zombie). Otherwise, this
 *   is the maxium wait time until returning. If @max_wait_msec is non-zero but smaller then @wait_before_kill_msec,
 *   we will not send a final %SIGKILL.
 *
 * Kill a non-child process synchronously and wait. This function will not return before the
 * process with PID @pid is gone, the process is a zombie, or @max_wait_msec expires.
 **/
void
nm_utils_kill_process_sync (pid_t pid, guint64 start_time, int sig, NMLogDomain log_domain,
                            const char *log_name, guint32 wait_before_kill_msec,
                            guint32 sleep_duration_msec, guint32 max_wait_msec)
{
	int errsv;
	guint64 start_time0;
	gint64 wait_until_sigkill, now, wait_start_us, max_wait_until;
	gulong sleep_time, sleep_duration_usec;
	int loop_count = 0;
	gboolean was_waiting = FALSE;
	char buf_wait[KC_WAITED_TO_STRING];
	char p_state;

	g_return_if_fail (pid > 0);
	g_return_if_fail (log_name != NULL);

	start_time0 = nm_utils_get_start_time_for_pid (pid, &p_state, NULL);
	if (start_time0 == 0) {
		nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it seems already gone",
		            LOG_NAME_ARGS, (long int) pid);
		return;
	}
	if (start_time != 0 && start_time != start_time0) {
		nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": don't kill process %ld because the start_time is unexpectedly %lu instead of %ld",
1014
		            LOG_NAME_ARGS, (long int) pid, (unsigned long) start_time0, (unsigned long) start_time);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		return;
	}

	switch (p_state) {
	case 'Z':
	case 'x':
	case 'X':
		nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": cannot kill process %ld because it is already a zombie (%c)",
		            LOG_NAME_ARGS, (long int) pid, p_state);
		return;
	default:
		break;
	}

	if (kill (pid, sig) != 0) {
		errsv = errno;
		/* ESRCH means, process does not exist or is already a zombie. */
		if (errsv == ESRCH) {
			nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s because process seems gone",
			            LOG_NAME_ARGS, _kc_signal_to_string (sig));
		} else {
			nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send %s: %s (%d)",
			             LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv);
		}
		return;
	}

1042
	/* wait for the process to terminate... */
1043 1044 1045 1046

	wait_start_us = nm_utils_get_monotonic_timestamp_us ();

	sleep_duration_usec = _sleep_duration_convert_ms_to_us (sleep_duration_msec);
1047
	if (sig != SIGKILL && wait_before_kill_msec)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		wait_until_sigkill = wait_start_us + (((gint64) wait_before_kill_msec) * 1000L);
	else
		wait_until_sigkill = 0;
	if (max_wait_msec > 0) {
		max_wait_until = wait_start_us + (((gint64) max_wait_msec) * 1000L);
		if (wait_until_sigkill > 0 && wait_until_sigkill > max_wait_msec)
			wait_until_sigkill = 0;
	} else
		max_wait_until = 0;

	while (TRUE) {
		start_time = nm_utils_get_start_time_for_pid (pid, &p_state, NULL);

		if (start_time != start_time0) {
			nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone after sending signal %s%s",
			            LOG_NAME_ARGS, _kc_signal_to_string (sig),
			            was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
			return;
		}
		switch (p_state) {
		case 'Z':
		case 'x':
		case 'X':
			nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is a zombie (%c) after sending signal %s%s",
			            LOG_NAME_ARGS, p_state, _kc_signal_to_string (sig),
			            was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
			return;
		default:
			break;
		}

		if (kill (pid, 0) != 0) {
			errsv = errno;
			/* ESRCH means, process does not exist or is already a zombie. */
			if (errsv == ESRCH) {
				nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie after sending signal %s%s",
				            LOG_NAME_ARGS, _kc_signal_to_string (sig),
				            was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
			} else {
				nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to kill(%ld, 0): %s (%d)%s",
				             LOG_NAME_ARGS, (long int) pid, strerror (errsv), errsv,
				             was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
			}
			return;
		}

		sleep_time = sleep_duration_usec;
		now = nm_utils_get_monotonic_timestamp_us ();

		if (   max_wait_until != 0
		    && now >= max_wait_until) {
			if (wait_until_sigkill != 0) {
				/* wait_before_kill_msec is not larger then max_wait_until but we did not yet send
				 * SIGKILL. Although we already reached our timeout, we don't want to skip sending
				 * the signal. Even if we don't wait for the process to disappear. */
				nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS);
				kill (pid, SIGKILL);
			}
			nm_log_warn (log_domain, LOG_NAME_PROCESS_FMT ": timeout %u msec waiting for process to disappear (after sending %s)%s",
			             LOG_NAME_ARGS, (unsigned) max_wait_until, _kc_signal_to_string (sig),
			             was_waiting ? _kc_waited_to_string (buf_wait, wait_start_us) : "");
			return;
		}

		if (wait_until_sigkill != 0) {
			if (now >= wait_until_sigkill) {
				/* Still not dead. SIGKILL now... */
				nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": sending SIGKILL", LOG_NAME_ARGS);
				if (kill (pid, SIGKILL) != 0) {
					errsv = errno;
					/* ESRCH means, process does not exist or is already a zombie. */
					if (errsv != ESRCH) {
						nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": process is gone or a zombie%s",
						            LOG_NAME_ARGS, _kc_waited_to_string (buf_wait, wait_start_us));
					} else {
						nm_log_warn (LOGD_CORE | log_domain, LOG_NAME_PROCESS_FMT ": failed to send SIGKILL (after sending %s), %s (%d)%s",
						             LOG_NAME_ARGS, _kc_signal_to_string (sig), strerror (errsv), errsv,
						             _kc_waited_to_string (buf_wait, wait_start_us));
					}
					return;
				}
				sig = SIGKILL;
				wait_until_sigkill = 0;
				loop_count = 0; /* reset the loop_count. Now we really expect the process to die quickly. */
			} else
				sleep_time = MIN (wait_until_sigkill - now, sleep_duration_usec);
		}

		if (!was_waiting) {
			if (wait_until_sigkill != 0) {
				nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear before sending KILL signal after sending %s...",
				            LOG_NAME_ARGS, (long) wait_before_kill_msec, _kc_signal_to_string (sig));
			} else if (max_wait_until != 0) {
				nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting up to %ld milliseconds for process to disappear after sending %s...",
				            LOG_NAME_ARGS, (long) max_wait_msec, _kc_signal_to_string (sig));
			} else {
				nm_log_dbg (log_domain, LOG_NAME_PROCESS_FMT ": waiting for process to disappear after sending %s...",
				            LOG_NAME_ARGS, _kc_signal_to_string (sig));
			}
			was_waiting = TRUE;
		}

		if (loop_count < 20) {
			/* At the beginning we expect the process to die fast.
			 * Limit the sleep time, the limit doubles with every iteration. */
			sleep_time = MIN (sleep_time, (((guint64) 1) << loop_count) * G_USEC_PER_SEC / 2000);
			loop_count++;
		}
		g_usleep (sleep_time);
	}
}
#undef LOG_NAME_FMT
#undef LOG_NAME_PROCESS_FMT
#undef LOG_NAME_ARGS

const char *const NM_PATHS_DEFAULT[] = {
	PREFIX "/sbin/",
	PREFIX "/bin/",
1166
	"/usr/local/sbin/",
1167 1168
	"/sbin/",
	"/usr/sbin/",
1169
	"/usr/local/bin/",
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	"/bin/",
	"/usr/bin/",
	NULL,
};

const char *
nm_utils_find_helper(const char *progname, const char *try_first, GError **error)
{
	return nm_utils_file_search_in_paths (progname, try_first, NM_PATHS_DEFAULT, G_FILE_TEST_IS_EXECUTABLE, NULL, NULL, error);
}

1181
/*****************************************************************************/
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/**
 * nm_utils_read_link_absolute:
 * @link_file: file name of the symbolic link
 * @error: error reason in case of failure
 *
 * Uses to g_file_read_link()/readlink() to read the symlink
 * and returns the result as absolute path.
 **/
char *
nm_utils_read_link_absolute (const char *link_file, GError **error)
{
	char *ln, *dirname, *ln_abs;

	ln = g_file_read_link (link_file, error);
	if (!ln)
		return NULL;
	if (g_path_is_absolute (ln))
		return ln;

	dirname = g_path_get_dirname (link_file);
	if (!g_path_is_absolute (link_file)) {
		gs_free char *dirname_rel = dirname;
1205
		gs_free char *current_dir = g_get_current_dir ();
1206

1207
		dirname = g_build_filename (current_dir, dirname_rel, NULL);
1208 1209 1210 1211 1212 1213 1214
	}
	ln_abs = g_build_filename (dirname, ln, NULL);
	g_free (dirname);
	g_free (ln);
	return ln_abs;
}

1215
/*****************************************************************************/
1216

1217 1218 1219
#define MAC_TAG "mac:"
#define INTERFACE_NAME_TAG "interface-name:"
#define DEVICE_TYPE_TAG "type:"
1220
#define DRIVER_TAG "driver:"
1221 1222 1223 1224 1225 1226 1227
#define SUBCHAN_TAG "s390-subchannels:"
#define EXCEPT_TAG "except:"
#define MATCH_TAG_CONFIG_NM_VERSION             "nm-version:"
#define MATCH_TAG_CONFIG_NM_VERSION_MIN         "nm-version-min:"
#define MATCH_TAG_CONFIG_NM_VERSION_MAX         "nm-version-max:"
#define MATCH_TAG_CONFIG_ENV                    "env:"

1228 1229 1230
typedef struct {
	const char *interface_name;
	const char *device_type;
1231 1232
	const char *driver;
	const char *driver_version;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	struct {
		const char *value;
		gboolean is_parsed;
		guint len;
		guint8 bin[NM_UTILS_HWADDR_LEN_MAX];
	} hwaddr;
	struct {
		const char *value;
		gboolean is_parsed;
		guint32 a;
		guint32 b;
		guint32 c;
	} s390_subchannels;
} MatchDeviceData;

1248
static gboolean
1249
match_device_s390_subchannels_parse (const char *s390_subchannels, guint32 *out_a, guint32 *out_b, guint32 *out_c)
1250
{
1251
	const int BUFSIZE = 30;
1252
	char buf[BUFSIZE + 1];
1253
	guint i = 0;
1254
	char *pa = NULL, *pb = NULL, *pc = NULL;
1255
	gint64 a, b, c;
1256

1257
	nm_assert (s390_subchannels);
1258 1259 1260 1261
	nm_assert (out_a);
	nm_assert (out_b);
	nm_assert (out_c);

1262
	if (!g_ascii_isxdigit (s390_subchannels[0]))
1263 1264 1265
		return FALSE;

	/* Get the first channel */
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	for (i = 0; s390_subchannels[i]; i++) {
		char ch = s390_subchannels[i];

		if (!g_ascii_isxdigit (ch) && ch != '.') {
			if (ch == ',') {
				/* FIXME: currently we consider the first channel and ignore
				 * everything after the first ',' separator. Maybe we should
				 * validate all present channels? */
				break;
			}
1276
			return FALSE;  /* Invalid chars */
1277
		}
1278 1279
		if (i >= BUFSIZE)
			return FALSE;  /* Too long to be a subchannel */
1280
		buf[i] = ch;
1281 1282 1283 1284 1285
	}
	buf[i] = '\0';

	/* and grab each of its elements, there should be 3 */
	pa = &buf[0];
1286
	pb = strchr (pa, '.');
1287 1288
	if (pb)
		pc = strchr (pb + 1, '.');
1289
	if (!pb || !pc)
1290 1291 1292 1293
		return FALSE;
	*pb++ = '\0';
	*pc++ = '\0';

1294 1295
	a = _nm_utils_ascii_str_to_int64 (pa, 16, 0, G_MAXUINT32, -1);
	if (a == -1)
1296
		return FALSE;
1297 1298
	b = _nm_utils_ascii_str_to_int64 (pb, 16, 0, G_MAXUINT32, -1);
	if (b == -1)
1299
		return FALSE;
1300 1301
	c = _nm_utils_ascii_str_to_int64 (pc, 16, 0, G_MAXUINT32, -1);
	if (c == -1)
1302 1303
		return FALSE;

1304 1305 1306
	*out_a = (guint32) a;
	*out_b = (guint32) b;
	*out_c = (guint32) c;
1307 1308 1309
	return TRUE;
}

1310
static gboolean
1311 1312
match_data_s390_subchannels_eval (const char *spec_str,
                                  MatchDeviceData *match_data)
1313
{
1314
	guint32 a, b, c;
1315

1316 1317
	if (G_UNLIKELY (!match_data->s390_subchannels.is_parsed)) {
		match_data->s390_subchannels.is_parsed = TRUE;
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327
		if (   !match_data->s390_subchannels.value
		    || !match_device_s390_subchannels_parse (match_data->s390_subchannels.value,
		                                             &match_data->s390_subchannels.a,
		                                             &match_data->s390_subchannels.b,
		                                             &match_data->s390_subchannels.c)) {
			match_data->s390_subchannels.value = NULL;
			return FALSE;
		}
	} else if (!match_data->s390_subchannels.value)
1328
		return FALSE;
1329 1330 1331 1332 1333 1334

	if (!match_device_s390_subchannels_parse (spec_str, &a, &b, &c))
		return FALSE;
	return    match_data->s390_subchannels.a == a
	       && match_data->s390_subchannels.b == b
	       && match_data->s390_subchannels.c == c;
1335 1336 1337
}

static gboolean
1338 1339
match_device_hwaddr_eval (const char *spec_str,
                          MatchDeviceData *match_data)
1340
{
1341 1342
	if (G_UNLIKELY (!match_data->hwaddr.is_parsed)) {
		match_data->hwaddr.is_parsed = TRUE;
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352
		if (match_data->hwaddr.value) {
			gsize l;

			if (!_nm_utils_hwaddr_aton (match_data->hwaddr.value, match_data->hwaddr.bin, sizeof (match_data->hwaddr.bin), &l))
				g_return_val_if_reached (FALSE);
			match_data->hwaddr.len = l;
		} else
			return FALSE;
	} else if (!match_data->hwaddr.len)
1353
		return FALSE;
1354 1355

	return nm_utils_hwaddr_matches (spec_str, -1, match_data->hwaddr.bin, match_data->hwaddr.len);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
}

#define _MATCH_CHECK(spec_str, tag) \
	({ \
		gboolean _has = FALSE; \
		\
		if (!g_ascii_strncasecmp (spec_str, (""tag""), NM_STRLEN (tag))) { \
			spec_str += NM_STRLEN (tag); \
			_has = TRUE; \
		} \
		_has; \
	})

static const char *
match_except (const char *spec_str, gboolean *out_except)
{
	if (_MATCH_CHECK (spec_str, EXCEPT_TAG))
		*out_except = TRUE;
	else
		*out_except = FALSE;
	return spec_str;
}

static gboolean
match_device_eval (const char *spec_str,
                   gboolean allow_fuzzy,
1382
                   MatchDeviceData *match_data)
1383
{
1384 1385 1386
	if (spec_str[0] == '*' && spec_str[1] == '\0')
		return TRUE;

1387
	if (_MATCH_CHECK (spec_str, DEVICE_TYPE_TAG)) {
1388 1389
		return    match_data->device_type
		       && nm_streq (spec_str, match_data->device_type);
1390 1391
	}

1392 1393
	if (_MATCH_CHECK (spec_str, MAC_TAG))
		return match_device_hwaddr_eval (spec_str, match_data);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	if (_MATCH_CHECK (spec_str, INTERFACE_NAME_TAG)) {
		gboolean use_pattern = FALSE;

		if (spec_str[0] == '=')
			spec_str += 1;
		else {
			if (spec_str[0] == '~')
				spec_str += 1;
			use_pattern = TRUE;
		}

1406 1407
		if (match_data->interface_name) {
			if (nm_streq (spec_str, match_data->interface_name))
1408
				return TRUE;
1409
			if (use_pattern && g_pattern_match_simple (spec_str, match_data->interface_name))
1410 1411 1412 1413 1414
				return TRUE;
		}
		return FALSE;
	}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	if (_MATCH_CHECK (spec_str, DRIVER_TAG)) {
		const char *t;

		if (!match_data->driver)
			return FALSE;

		/* support:
		 * 1) "${DRIVER}"
		 *   In this case, DRIVER may not contain a '/' character.
		 *   It matches any driver version.
		 * 2) "${DRIVER}/${DRIVER_VERSION}"
		 *   In this case, DRIVER may contains '/' but DRIVER_VERSION
		 *   may not. A '/' in DRIVER_VERSION may be replaced by '?'.
		 *
		 * It follows, that "${DRIVER}/""*" is like 1), but allows
		 * '/' inside DRIVER.
		 *
		 * The fields match to what `nmcli -f GENERAL.DRIVER,GENERAL.DRIVER-VERSION device show`
		 * gives. However, DRIVER matches literally, while DRIVER_VERSION is a glob
		 * supporting ? and *.
		 */

		t = strrchr (spec_str, '/');

		if (!t)
			return nm_streq (spec_str, match_data->driver);

		return    (strncmp (spec_str, match_data->driver, t - spec_str) == 0)
		       && g_pattern_match_simple (&t[1],
		                                  match_data->driver_version ?: "");
	}

1447
	if (_MATCH_CHECK (spec_str, SUBCHAN_TAG))
1448
		return match_data_s390_subchannels_eval (spec_str, match_data);
1449 1450

	if (allow_fuzzy) {
1451
		if (match_device_hwaddr_eval (spec_str, match_data))
1452
			return TRUE;
1453 1454
		if (   match_data->interface_name
		    && nm_streq (spec_str, match_data->interface_name))
1455 1456 1457 1458 1459 1460
			return TRUE;
	}

	return FALSE;
}

1461
NMMatchSpecMatchType
1462 1463 1464
nm_match_spec_device (const GSList *specs,
                      const char *interface_name,
                      const char *device_type,
1465 1466
                      const char *driver,
                      const char *driver_version,
1467 1468
                      const char *hwaddr,
                      const char *s390_subchannels)
1469 1470
{
	const GSList *iter;
1471 1472 1473
	NMMatchSpecMatchType match;
	const char *spec_str;
	gboolean except;
1474 1475 1476
	MatchDeviceData match_data = {
	    .interface_name = interface_name,
	    .device_type = nm_str_not_empty (device_type),
1477 1478
	    .driver = nm_str_not_empty (driver),
	    .driver_version = nm_str_not_empty (driver_version),
1479 1480 1481 1482 1483 1484
	    .hwaddr = {
	        .value = hwaddr,
	    },
	    .s390_subchannels = {
	        .value = s390_subchannels,
	    },
1485
	};
1486

1487
	nm_assert (!hwaddr || nm_utils_hwaddr_valid (hwaddr, -1));
1488 1489 1490 1491

	if (!specs)
		return NM_MATCH_SPEC_NO_MATCH;

1492 1493 1494
	match = NM_MATCH_SPEC_NO_MATCH;

	/* pre-search for "*" */
1495 1496 1497
	for (iter = specs; iter; iter = iter->next) {
		spec_str = iter->data;

1498 1499 1500
		if (spec_str && spec_str[0] == '*' && spec_str[1] == '\0') {
			match = NM_MATCH_SPEC_MATCH;
			break;
1501 1502 1503 1504 1505
		}
	}

	for (iter = specs; iter; iter = iter->next) {
		spec_str = iter->data;
1506 1507 1508 1509

		if (!spec_str || !*spec_str)
			continue;

1510
		spec_str = match_except (spec_str, &except);
1511

1512 1513 1514 1515 1516
		if (   !except
		    && match == NM_MATCH_SPEC_MATCH) {
			/* we have no "except-match" but already match. No need to evaluate
			 * the match, we cannot match stronger. */
			continue;
1517
		}
1518 1519 1520

		if (!match_device_eval (spec_str,
		                        !except,
1521
		                        &match_data))
1522 1523 1524 1525 1526
			continue;

		if (except)
			return NM_MATCH_SPEC_NEG_MATCH;
		match = NM_MATCH_SPEC_MATCH;
1527
	}
1528

1529 1530 1531 1532
	return match;
}

static gboolean
1533
match_config_eval (const char *str, const char *tag, guint cur_nm_version)
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
{
	gs_free char *s_ver = NULL;
	gs_strfreev char **s_ver_tokens = NULL;
	gint v_maj = -1, v_min = -1, v_mic = -1;
	guint c_maj = -1, c_min = -1, c_mic = -1;
	guint n_tokens;

	s_ver = g_strdup (str);
	g_strstrip (s_ver);

	/* Let's be strict with the accepted format here. No funny stuff!! */

	if (s_ver[strspn (s_ver, ".0123456789")] != '\0')
		return FALSE;

	s_ver_tokens = g_strsplit (s_ver, ".", -1);
	n_tokens = g_strv_length (s_ver_tokens);
	if (n_tokens == 0 || n_tokens > 3)
		return FALSE;

	v_maj = _nm_utils_ascii_str_to_int64 (s_ver_tokens[0], 10, 0, 0xFFFF, -1);
	if (v_maj < 0)
		return FALSE;
	if (n_tokens >= 2) {
		v_min = _nm_utils_ascii_str_to_int64 (s_ver_tokens[1], 10, 0, 0xFF, -1);
		if (v_min < 0)
			return FALSE;
	}
	if (n_tokens >= 3) {
		v_mic = _nm_utils_ascii_str_to_int64 (s_ver_tokens[2], 10, 0, 0xFF, -1);
		if (v_mic < 0)
			return FALSE;
	}

	nm_decode_version (cur_nm_version, &c_maj, &c_min, &c_mic);

#define CHECK_AND_RETURN_FALSE(cur, val, tag, is_last_digit) \
	G_STMT_START { \
		if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MIN)) { \
			if (cur < val) \
				return FALSE; \
		} else if (!strcmp (tag, MATCH_TAG_CONFIG_NM_VERSION_MAX)) { \
			if (cur > val) \
				return FALSE; \
		} else { \
			if (cur != val) \
				return FALSE; \
		} \
		if (!(is_last_digit)) { \
			if (cur != val) \
				return FALSE; \
		} \
	} G_STMT_END
	if (v_mic >= 0)
		CHECK_AND_RETURN_FALSE (c_mic, v_mic, tag, TRUE);
	if (v_min >= 0)
		CHECK_AND_RETURN_FALSE (c_min, v_min, tag, v_mic < 0);
	CHECK_AND_RETURN_FALSE (c_maj, v_maj, tag, v_min < 0);
	return TRUE;
}

NMMatchSpecMatchType
1596
nm_match_spec_config (const GSList *specs, guint cur_nm_version, const char *env)
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
{
	const GSList *iter;
	NMMatchSpecMatchType match = NM_MATCH_SPEC_NO_MATCH;

	if (!specs)
		return NM_MATCH_SPEC_NO_MATCH;

	for (iter = specs; iter; iter = g_slist_next (iter)) {
		const char *spec_str = iter->data;
		gboolean except;
		gboolean v_match;

		if (!spec_str || !*spec_str)
			continue;

1612
		spec_str = match_except (spec_str, &except);
1613

1614 1615 1616 1617 1618 1619 1620
		if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION))
			v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION, cur_nm_version);
		else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN))
			v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MIN, cur_nm_version);
		else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX))
			v_match = match_config_eval (spec_str, MATCH_TAG_CONFIG_NM_VERSION_MAX, cur_nm_version);
		else if (_MATCH_CHECK (spec_str, MATCH_TAG_CONFIG_ENV))
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
			v_match = env && env[0] && !strcmp (spec_str, env);
		else
			continue;

		if (v_match) {
			if (except)
				return NM_MATCH_SPEC_NEG_MATCH;
			match = NM_MATCH_SPEC_MATCH;
		}
	}
	return match;
}

1634 1635
#undef _MATCH_CHECK

1636 1637 1638 1639 1640
/**
 * nm_match_spec_split:
 * @value: the string of device specs
 *
 * Splits the specs from the string and returns them as individual
1641
 * entries in a #GSList.
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
 *
 * It does not validate any specs, it basically just does a special
 * strsplit with ',' or ';' as separators and supporting '\\' as
 * escape character.
 *
 * Leading and trailing spaces of each entry are removed. But the user
 * can preserve them by specifying "\\s has 2 leading" or "has 2 trailing \\s".
 *
 * Specs can have a qualifier like "interface-name:". We still don't strip
 * any whitespace after the colon, so "interface-name: X" matches an interface
 * named " X".
 *
 * Returns: (transfer full): the list of device specs.
 */
GSList *
nm_match_spec_split (const char *value)
{
	char *string_value, *p, *q0, *q;
	GSList *pieces = NULL;
	int trailing_ws;

	if (!value || !*value)
		return NULL;

	/* Copied from glibs g_key_file_parse_value_as_string() function
	 * and adjusted. */

	string_value = g_new (gchar, strlen (value) + 1);

	p = (gchar *) value;

	/* skip over leading whitespace */
	while (g_ascii_isspace (*p))
		p++;

	q0 = q = string_value;
	trailing_ws = 0;
	while (*p) {
		if (*p == '\\') {
			p++;

			switch (*p) {
			case 's':
				*q = ' ';
				break;
			case 'n':
				*q = '\n';
				break;
			case 't':
				*q = '\t';
				break;
			case 'r':
				*q = '\r';
				break;
			case '\\':
				*q = '\\';
				break;
			case '\0':
				break;
			default:
				if (NM_IN_SET (*p, ',', ';'))
					*q = *p;
				else {
					*q++ = '\\';
					*q = *p;
				}
				break;
			}
			if (*p == '\0')
				break;
			p++;
			trailing_ws = 0;
		} else {
			*q = *p;
			if (*p == '\0')
				break;
			if (g_ascii_isspace (*p)) {
				trailing_ws++;
				p++;
			} else if (NM_IN_SET (*p, ',', ';')) {
				if (q0 < q - trailing_ws)
					pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws));
				q0 = q + 1;
				p++;
				trailing_ws = 0;
				while (g_ascii_isspace (*p))
					p++;
			} else
				p++;
		}
		q++;
	}

	*q = '\0';
	if (q0 < q - trailing_ws)
		pieces = g_slist_prepend (pieces, g_strndup (q0, (q - q0) - trailing_ws));
	g_free (string_value);
	return g_slist_reverse (pieces);
}

/**
 * nm_match_spec_join:
 * @specs: the device specs to join
 *
 * This is based on g_key_file_parse_string_as_value(), analog to
 * nm_match_spec_split() which is based on g_key_file_parse_value_as_string().
 *
 * Returns: (transfer full): a joined list of device specs that can be
 *   split again with nm_match_spec_split(). Note that
 *   nm_match_spec_split (nm_match_spec_join (specs)) yields the original
 *   result (which is not true the other way around because there are multiple
 *   ways to encode the same joined specs string).
 */
char *
nm_match_spec_join (GSList *specs)
{
	const char *p;
	GString *str;

	str = g_string_new ("");

	for (; specs; specs = specs->next) {
		p = specs->data;

		if (!p || !*p)
			continue;

		if (str->len > 0)
			g_string_append_c (str, ',');

		/* escape leading whitespace */
		switch (*p) {
		case ' ':
			g_string_append (str, "\\s");
			p++;
			break;
		case '\t':
			g_string_append (str, "\\t");
			p++;
			break;
		}

		for (; *p; p++) {
			switch (*p) {
			case '\n':
				g_string_append (str, "\\n");
				break;
			case '\r':
				g_string_append (str, "\\r");
				break;
			case '\\':
				g_string_append (str, "\\\\");
				break;
			case ',':
				g_string_append (str, "\\,");
				break;
			case ';':
				g_string_append (str, "\\;");
				break;
			default:
				g_string_append_c (str, *p);
				break;
			}
		}

		/* escape trailing whitespaces */
		switch (str->str[str->len - 1]) {
		case ' ':
			g_string_overwrite (str, str->len - 1, "\\s");
			break;
		case '\t':
			g_string_overwrite (str, str->len - 1, "\\t");
			break;
		}
	}

	return g_string_free (str, FALSE);
}

/*****************************************************************************/

char _nm_utils_to_string_buffer[];

void
nm_utils_to_string_buffer_init (char **buf, gsize *len)
{
	if (!*buf) {
		*buf = _nm_utils_to_string_buffer;
		*len = sizeof (_nm_utils_to_string_buffer);
	}
}

gboolean
nm_utils_to_string_buffer_init_null (gconstpointer obj, char **buf, gsize *len)
{
	nm_utils_to_string_buffer_init (buf, len);
	if (!obj) {
		g_strlcpy (*buf, "(null)", *len);
		return FALSE;
	}
	return TRUE;
}

const char *
nm_utils_flags2str (const NMUtilsFlags2StrDesc *descs,
                    gsize n_descs,
                    unsigned flags,
                    char *buf,
                    gsize len)
{
	gsize i;
	char *p;

#if NM_MORE_ASSERTS > 10
	nm_assert (descs);
	nm_assert (n_descs > 0);
	for (i = 0; i < n_descs; i++) {
		gsize j;

		nm_assert (descs[i].flag && nm_utils_is_power_of_two (descs[i].flag));
		nm_assert (descs[i].name && descs[i].name[0]);
		for (j = 0; j < i; j++)
			nm_assert (descs[j].flag != descs[i].flag);
	}
#endif

	nm_utils_to_string_buffer_init (&buf, &len);

	if (!len)
		return buf;

	buf[0] = '\0';
	if (!flags) {
		return buf;
	}

	p = buf;
	for (i = 0; flags && i < n_descs; i++) {
		if (NM_FLAGS_HAS (flags, descs[i].flag)) {
			flags &= ~descs[i].flag;

			if (buf[0] != '\0')
				nm_utils_strbuf_append_c (&p, &len, ',');
			nm_utils_strbuf_append_str (&p, &len, descs[i].name);
		}
	}
	if (flags) {
		if (buf[0] != '\0')
			nm_utils_strbuf_append_c (&p, &len, ',');
		nm_utils_strbuf_append (&p, &len, "0x%x", flags);
	}
	return buf;
};

/*****************************************************************************/

char *
nm_utils_new_vlan_name (const char *parent_iface, guint32 vlan_id)
{
	guint id_len;
	gsize parent_len;
	char *ifname;

	g_return_val_if_fail (parent_iface && *parent_iface, NULL);

	if (vlan_id < 10)
		id_len = 2;
	else if (vlan_id < 100)
		id_len = 3;
	else if (vlan_id < 1000)
		id_len = 4;
	else {
		g_return_val_if_fail (vlan_id < 4095, NULL);
		id_len = 5;
	}

	ifname = g_new (char, IFNAMSIZ);

	parent_len = strlen (parent_iface);
	parent_len = MIN (parent_len, IFNAMSIZ - 1 - id_len);
	memcpy (ifname, parent_iface, parent_len);
	g_snprintf (&ifname[parent_len], IFNAMSIZ - parent_len, ".%u", vlan_id);

	return ifname;
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
/* nm_utils_new_infiniband_name:
 * @name: the output-buffer where the value will be written. Must be
 *   not %NULL and point to a string buffer of at least IFNAMSIZ bytes.
 * @parent_name: the parent interface name
 * @p_key: the partition key.
 *
 * Returns: the infiniband name will be written to @name and @name
 *   is returned.
 */
const char *
nm_utils_new_infiniband_name (char *name, const char *parent_name, int p_key)
{
	g_return_val_if_fail (name, NULL);
	g_return_val_if_fail (parent_name && parent_name[0], NULL);
	g_return_val_if_fail (strlen (parent_name) < IFNAMSIZ, NULL);

	/* technically, p_key of 0x0000 and 0x8000 is not allowed either. But we don't
	 * want to assert against that in nm_utils_new_infiniband_name(). So be more
	 * resilient here, and accept those. */
	g_return_val_if_fail (p_key >= 0 && p_key <= 0xffff, NULL);

	/* If parent+suffix is too long, kernel would just truncate
	 * the name. We do the same. See ipoib_vlan_add().  */
	g_snprintf (name, IFNAMSIZ, "%s.%04x", parent_name, p_key);
	return name;
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
/**
 * nm_utils_read_resolv_conf_nameservers():
 * @rc_contents: contents of a resolv.conf; or %NULL to read /etc/resolv.conf
 *
 * Reads all nameservers out of @rc_contents or /etc/resolv.conf and returns
 * them.
 *
 * Returns: a #GPtrArray of 'char *' elements of each nameserver line from
 * @contents or resolv.conf
 */
GPtrArray *
nm_utils_read_resolv_conf_nameservers (const char *rc_contents)
{
	GPtrArray *nameservers = NULL;
	char *contents = NULL;
	char **lines, **iter;
	char *p;

	if (rc_contents)
		contents = g_strdup (rc_contents);
	else {
		if (!g_file_get_contents (_PATH_RESCONF, &contents, NULL, NULL))
			return NULL;
	}

	nameservers = g_ptr_array_new_full (3, g_free);

	lines = g_strsplit_set (contents, "\r\n", -1);
	for (iter = lines; *iter; iter++) {
		if (!g_str_has_prefix (*iter, "nameserver"))
			continue;
		p = *iter + strlen ("nameserver");
		if (!g_ascii_isspace (*p++))
			continue;
		/* Skip intermediate whitespace */
		while (g_ascii_isspace (*p))
			p++;
		g_strchomp (p);

		g_ptr_array_add (nameservers, g_strdup (p));
	}
	g_strfreev (lines);
	g_free (contents);

	return nameservers;
}

/**
 * nm_utils_read_resolv_conf_dns_options():
 * @rc_contents: contents of a resolv.conf; or %NULL to read /etc/resolv.conf
 *
 * Reads all dns options out of @rc_contents or /etc/resolv.conf and returns
 * them.
 *
 * Returns: a #GPtrArray of 'char *' elements of each option
 */
GPtrArray *
nm_utils_read_resolv_conf_dns_options (const char *rc_contents)
{
	GPtrArray *options = NULL;
	char *contents = NULL;
	char **lines, **line_iter;
	char **tokens, **token_iter;
	char *p;

	if (rc_contents)
		contents = g_strdup (rc_contents);
	else {
		if (!g_file_get_contents (_PATH_RESCONF, &contents, NULL, NULL))
			return NULL;
	}

	options = g_ptr_array_new_full (3, g_free);

	lines = g_strsplit_set (contents, "\r\n", -1);
	for (line_iter = lines; *line_iter; line_iter++) {
		if (!g_str_has_prefix (*line_iter, "options"))
			continue;
		p = *line_iter + strlen ("options");
		if (!g_ascii_isspace (*p++))
			continue;

		tokens = g_strsplit (p, " ", 0);
		for (token_iter = tokens; token_iter && *token_iter; token_iter++) {
			g_strstrip (*token_iter);
			if (!*token_iter[0])
				continue;
			g_ptr_array_add (options, g_strdup (*token_iter));
		}
		g_strfreev (tokens);
	}
	g_strfreev (lines);
	g_free (contents);

	return options;
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/*****************************************************************************/

/**
 * nm_utils_cmp_connection_by_autoconnect_priority:
 * @a:
 * @b:
 *
 * compare connections @a and @b for their autoconnect property
 * (with sorting the connection that has autoconnect enabled before
 * the other)
 * If they both have autoconnect enabled, sort them depending on their
 * autoconnect-priority (with the higher priority first).
 *
 * If their autoconnect/autoconnect-priority is the same, 0 is returned.
 * That is, they compare equal.
 *
 * Returns: -1, 0, or 1
 */
2070
int
2071
nm_utils_cmp_connection_by_autoconnect_priority (NMConnection *a, NMConnection *b)
2072
{
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	NMSettingConnection *a_s_con;
	NMSettingConnection *b_s_con;
	int a_ap, b_ap;
	gboolean can_autoconnect;

	if (a == b)
		return 0;
	if (!a)
		return 1;
	if (!b)
		return -1;
2084

2085 2086
	a_s_con = nm_connection_get_setting_connection (a);
	b_s_con = nm_connection_get_setting_connection (b);
2087

2088 2089 2090 2091 2092 2093 2094 2095
	if (!a_s_con)
		return !b_s_con ? 0 : 1;
	if (!b_s_con)
		return -1;

	can_autoconnect = !!nm_setting_connection_get_autoconnect (a_s_con);
	if (can_autoconnect != (!!nm_setting_connection_get_autoconnect (b_s_con)))
		return can_autoconnect ? -1 : 1;
2096

2097 2098 2099 2100 2101 2102
	if (can_autoconnect) {
		a_ap = nm_setting_connection_get_autoconnect_priority (a_s_con);
		b_ap = nm_setting_connection_get_autoconnect_priority (b_s_con);
		if (a_ap != b_ap)
			return (a_ap > b_ap) ? -1 : 1;
	}
2103 2104 2105 2106

	return 0;
}

2107
/*****************************************************************************/
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

static gint64 monotonic_timestamp_offset_sec;
static int monotonic_timestamp_clock_mode = 0;

static void
monotonic_timestamp_get (struct timespec *tp)
{
	int clock_mode = 0;
	int err = 0;

	switch (monotonic_timestamp_clock_mode) {
	case 0:
		/* the clock is not yet initialized (first run) */
		err = clock_gettime (CLOCK_BOOTTIME, tp);
		if (err == -1 && errno == EINVAL) {
			clock_mode = 2;
			err = clock_gettime (CLOCK_MONOTONIC, tp);
		} else
			clock_mode = 1;
		break;
	case 1:
		/* default, return CLOCK_BOOTTIME */
		err = clock_gettime (CLOCK_BOOTTIME, tp);
		break;
	case 2:
		/* fallback, return CLOCK_MONOTONIC. Kernels prior to 2.6.39
		 * don't support CLOCK_BOOTTIME. */
		err = clock_gettime (CLOCK_MONOTONIC, tp);
		break;
	}

	g_assert (err == 0); (void)err;
	g_assert (tp->tv_nsec >= 0 && tp->tv_nsec < NM_UTILS_NS_PER_SECOND);

	if (G_LIKELY (clock_mode == 0))
		return;

	/* Calculate an offset for the time stamp.
	 *
	 * We always want positive values, because then we can initialize
	 * a timestamp with 0 and be sure, that it will be less then any
	 * value nm_utils_get_monotonic_timestamp_*() might return.
	 * For this to be true also for nm_utils_get_monotonic_timestamp_s() at
	 * early boot, we have to shift the timestamp to start counting at
	 * least from 1 second onward.
	 *
	 * Another advantage of shifting is, that this way we make use of the whole 31 bit